ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-07
    Description: Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716080/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716080/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Jun -- Wang, Wei -- Li, Ruiqiang -- Li, Yingrui -- Tian, Geng -- Goodman, Laurie -- Fan, Wei -- Zhang, Junqing -- Li, Jun -- Zhang, Juanbin -- Guo, Yiran -- Feng, Binxiao -- Li, Heng -- Lu, Yao -- Fang, Xiaodong -- Liang, Huiqing -- Du, Zhenglin -- Li, Dong -- Zhao, Yiqing -- Hu, Yujie -- Yang, Zhenzhen -- Zheng, Hancheng -- Hellmann, Ines -- Inouye, Michael -- Pool, John -- Yi, Xin -- Zhao, Jing -- Duan, Jinjie -- Zhou, Yan -- Qin, Junjie -- Ma, Lijia -- Li, Guoqing -- Yang, Zhentao -- Zhang, Guojie -- Yang, Bin -- Yu, Chang -- Liang, Fang -- Li, Wenjie -- Li, Shaochuan -- Li, Dawei -- Ni, Peixiang -- Ruan, Jue -- Li, Qibin -- Zhu, Hongmei -- Liu, Dongyuan -- Lu, Zhike -- Li, Ning -- Guo, Guangwu -- Zhang, Jianguo -- Ye, Jia -- Fang, Lin -- Hao, Qin -- Chen, Quan -- Liang, Yu -- Su, Yeyang -- San, A -- Ping, Cuo -- Yang, Shuang -- Chen, Fang -- Li, Li -- Zhou, Ke -- Zheng, Hongkun -- Ren, Yuanyuan -- Yang, Ling -- Gao, Yang -- Yang, Guohua -- Li, Zhuo -- Feng, Xiaoli -- Kristiansen, Karsten -- Wong, Gane Ka-Shu -- Nielsen, Rasmus -- Durbin, Richard -- Bolund, Lars -- Zhang, Xiuqing -- Li, Songgang -- Yang, Huanming -- Wang, Jian -- 077192/Wellcome Trust/United Kingdom -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HG003229-04/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Nov 6;456(7218):60-5. doi: 10.1038/nature07484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beijing Genomics Institute at Shenzhen, Shenzhen 518000, China. wangj@genomics.org.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987735" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Asian Continental Ancestry Group/*genetics ; Consensus Sequence ; Databases, Genetic ; *Diploidy ; Genetic Predisposition to Disease/genetics ; Genome, Human/*genetics ; *Genomics ; Haplotypes/genetics ; Humans ; Internet ; Pan troglodytes/genetics ; Phenotype ; Polymorphism, Single Nucleotide/genetics ; Sensitivity and Specificity ; Sequence Alignment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-08-29
    Description: A single-base pair resolution silkworm genetic variation map was constructed from 40 domesticated and wild silkworms, each sequenced to approximately threefold coverage, representing 99.88% of the genome. We identified ~16 million single-nucleotide polymorphisms, many indels, and structural variations. We find that the domesticated silkworms are clearly genetically differentiated from the wild ones, but they have maintained large levels of genetic variability, suggesting a short domestication event involving a large number of individuals. We also identified signals of selection at 354 candidate genes that may have been important during domestication, some of which have enriched expression in the silk gland, midgut, and testis. These data add to our understanding of the domestication processes and may have applications in devising pest control strategies and advancing the use of silkworms as efficient bioreactors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951477/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951477/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xia, Qingyou -- Guo, Yiran -- Zhang, Ze -- Li, Dong -- Xuan, Zhaoling -- Li, Zhuo -- Dai, Fangyin -- Li, Yingrui -- Cheng, Daojun -- Li, Ruiqiang -- Cheng, Tingcai -- Jiang, Tao -- Becquet, Celine -- Xu, Xun -- Liu, Chun -- Zha, Xingfu -- Fan, Wei -- Lin, Ying -- Shen, Yihong -- Jiang, Lan -- Jensen, Jeffrey -- Hellmann, Ines -- Tang, Si -- Zhao, Ping -- Xu, Hanfu -- Yu, Chang -- Zhang, Guojie -- Li, Jun -- Cao, Jianjun -- Liu, Shiping -- He, Ningjia -- Zhou, Yan -- Liu, Hui -- Zhao, Jing -- Ye, Chen -- Du, Zhouhe -- Pan, Guoqing -- Zhao, Aichun -- Shao, Haojing -- Zeng, Wei -- Wu, Ping -- Li, Chunfeng -- Pan, Minhui -- Li, Jingjing -- Yin, Xuyang -- Li, Dawei -- Wang, Juan -- Zheng, Huisong -- Wang, Wen -- Zhang, Xiuqing -- Li, Songgang -- Yang, Huanming -- Lu, Cheng -- Nielsen, Rasmus -- Zhou, Zeyang -- Wang, Jian -- Xiang, Zhonghuai -- Wang, Jun -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HG003229-05/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 16;326(5951):433-6. doi: 10.1126/science.1176620. Epub 2009 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19713493" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bombyx/classification/*genetics ; Digestive System/metabolism ; Exocrine Glands/metabolism ; Female ; Gene Expression ; *Genes, Insect ; *Genetic Variation ; *Genome, Insect ; INDEL Mutation ; Linkage Disequilibrium ; Male ; Phylogeny ; Polymorphism, Single Nucleotide ; Principal Component Analysis ; Selection, Genetic ; *Sequence Analysis, DNA ; Testis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-09-06
    Description: The determination of the chimpanzee genome sequence provides a means to study both structural and functional aspects of the evolution of the human genome. Here we compare humans and chimpanzees with respect to differences in expression levels and protein-coding sequences for genes active in brain, heart, liver, kidney, and testis. We find that the patterns of differences in gene expression and gene sequences are markedly similar. In particular, there is a gradation of selective constraints among the tissues so that the brain shows the least differences between the species whereas liver shows the most. Furthermore, expression levels as well as amino acid sequences of genes active in more tissues have diverged less between the species than have genes active in fewer tissues. In general, these patterns are consistent with a model of neutral evolution with negative selection. However, for X-chromosomal genes expressed in testis, patterns suggestive of positive selection on sequence changes as well as expression changes are seen. Furthermore, although genes expressed in the brain have changed less than have genes expressed in other tissues, in agreement with previous work we find that genes active in brain have accumulated more changes on the human than on the chimpanzee lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khaitovich, Philipp -- Hellmann, Ines -- Enard, Wolfgang -- Nowick, Katja -- Leinweber, Marcus -- Franz, Henriette -- Weiss, Gunter -- Lachmann, Michael -- Paabo, Svante -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1850-4. Epub 2005 Sep 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141373" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Amino Acid Sequence ; Animals ; Base Sequence ; Child ; Chromosomes, Human, X/genetics ; Chromosomes, Mammalian/genetics ; *Evolution, Molecular ; Female ; *Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; *Genome ; *Genome, Human ; Heart/physiology ; Humans ; Kidney/physiology ; Liver/physiology ; Male ; Middle Aged ; Models, Genetic ; Oligonucleotide Array Sequence Analysis ; Organ Specificity ; Pan troglodytes/*genetics ; Prefrontal Cortex/physiology ; Promoter Regions, Genetic ; Proteins/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Species Specificity ; Testis/physiology ; *Transcription, Genetic ; X Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-23
    Description: Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498939/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498939/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prufer, Kay -- Munch, Kasper -- Hellmann, Ines -- Akagi, Keiko -- Miller, Jason R -- Walenz, Brian -- Koren, Sergey -- Sutton, Granger -- Kodira, Chinnappa -- Winer, Roger -- Knight, James R -- Mullikin, James C -- Meader, Stephen J -- Ponting, Chris P -- Lunter, Gerton -- Higashino, Saneyuki -- Hobolth, Asger -- Dutheil, Julien -- Karakoc, Emre -- Alkan, Can -- Sajjadian, Saba -- Catacchio, Claudia Rita -- Ventura, Mario -- Marques-Bonet, Tomas -- Eichler, Evan E -- Andre, Claudine -- Atencia, Rebeca -- Mugisha, Lawrence -- Junhold, Jorg -- Patterson, Nick -- Siebauer, Michael -- Good, Jeffrey M -- Fischer, Anne -- Ptak, Susan E -- Lachmann, Michael -- Symer, David E -- Mailund, Thomas -- Schierup, Mikkel H -- Andres, Aida M -- Kelso, Janet -- Paabo, Svante -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 2R01GM077117-04A1/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- R01 GM077117/GM/NIGMS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Jun 28;486(7404):527-31. doi: 10.1038/nature11128.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. pruefer@eva.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Transposable Elements/genetics ; *Evolution, Molecular ; Gene Duplication/genetics ; Genetic Variation/*genetics ; Genome/*genetics ; Genome, Human/*genetics ; Genotype ; Humans ; Molecular Sequence Data ; Pan paniscus/*genetics ; Pan troglodytes/*genetics ; Phenotype ; Phylogeny ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-12-20
    Description: We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031459/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031459/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prufer, Kay -- Racimo, Fernando -- Patterson, Nick -- Jay, Flora -- Sankararaman, Sriram -- Sawyer, Susanna -- Heinze, Anja -- Renaud, Gabriel -- Sudmant, Peter H -- de Filippo, Cesare -- Li, Heng -- Mallick, Swapan -- Dannemann, Michael -- Fu, Qiaomei -- Kircher, Martin -- Kuhlwilm, Martin -- Lachmann, Michael -- Meyer, Matthias -- Ongyerth, Matthias -- Siebauer, Michael -- Theunert, Christoph -- Tandon, Arti -- Moorjani, Priya -- Pickrell, Joseph -- Mullikin, James C -- Vohr, Samuel H -- Green, Richard E -- Hellmann, Ines -- Johnson, Philip L F -- Blanche, Helene -- Cann, Howard -- Kitzman, Jacob O -- Shendure, Jay -- Eichler, Evan E -- Lein, Ed S -- Bakken, Trygve E -- Golovanova, Liubov V -- Doronichev, Vladimir B -- Shunkov, Michael V -- Derevianko, Anatoli P -- Viola, Bence -- Slatkin, Montgomery -- Reich, David -- Kelso, Janet -- Paabo, Svante -- 59107334/Howard Hughes Medical Institute/ -- GM100233/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- HG006283/HG/NHGRI NIH HHS/ -- R01 GM040282/GM/NIGMS NIH HHS/ -- R01 GM100233/GM/NIGMS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01 HG006283/HG/NHGRI NIH HHS/ -- R01-GM40282/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jan 2;505(7481):43-9. doi: 10.1038/nature12886. Epub 2013 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. ; Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany [2] Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. ; 1] Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany [2] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Genome Technology Branch and NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA. ; 1] Max F. Perutz Laboratories, Mathematics and Bioscience Group, Campus Vienna Biocenter 5, Vienna 1030, Austria [2] Ludwig-Maximilians-Universitat Munchen, Martinsried, 82152 Munich, Germany. ; Department of Biology, Emory University, Atlanta, Georgia 30322, USA. ; Fondation Jean Dausset, Centre d'Etude du Polymorphisme Humain (CEPH), 75010 Paris, France. ; 1] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Seattle, Washington 98195, USA. ; Allen Institute for Brain Science, Seattle, Washington 98103, USA. ; ANO Laboratory of Prehistory 14 Linia 3-11, St. Petersburg 1990 34, Russia. ; Palaeolithic Department, Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24352235" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Caves ; DNA Copy Number Variations/genetics ; Female ; *Fossils ; Gene Flow/genetics ; Gene Frequency ; Genome/*genetics ; Heterozygote ; Humans ; Inbreeding ; Models, Genetic ; Neanderthals/classification/*genetics ; Phylogeny ; Population Density ; Siberia/ethnology ; Toe Phalanges/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Human–chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-16
    Description: : S weep F inder is a widely used program that implements a powerful likelihood-based method for detecting recent positive selection, or selective sweeps. Here, we present S weep F inder 2, an extension of S weep F inder with increased sensitivity and robustness to the confounding effects of mutation rate variation and background selection. Moreover, S weep F inder 2 has increased flexibility that enables the user to specify test sites, set the distance between test sites and utilize a recombination map. Availability and implementation: S weep F inder 2 is a freely-available ( www.personal.psu.edu/mxd60/sf2.html ) software package that is written in C and can be run from a Unix command line. Contact: mxd60@psu.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-11-01
    Print ISSN: 1293-2558
    Electronic ISSN: 1873-3085
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-26
    Description: Detecting positive selection in species with heterogeneous habitats and complex demography is notoriously difficult and prone to statistical biases. The model plant Arabidopsis thaliana exemplifies this problem: In spite of the large amounts of data, little evidence for classic selective sweeps has been found. Moreover, many aspects of the demography are unclear, which makes it hard to judge whether the few signals are indeed signs of selection, or false positives caused by demographic events. Here, we focus on Swedish A. thaliana and we find that the demography can be approximated as a two-population model. Careful analysis of the data shows that such a two island model is characterized by a very old split time that significantly predates the last glacial maximum followed by secondary contact with strong migration. We evaluate selection based on this demography and find that this secondary contact model strongly affects the power to detect sweeps. Moreover, it affects the power differently for northern Sweden (more false positives) as compared with southern Sweden (more false negatives). However, even when the demographic history is accounted for, sweep signals in northern Sweden are stronger than in southern Sweden, with little or no positional overlap. Further simulations including the complex demography and selection confirm that this is not compatible with global selection acting on both populations, and thus can be taken as evidence for local selection within subpopulations of Swedish A. thaliana . This study demonstrates the necessity of combining demographic analyses and sweep scans for the detection of selection, particularly when selection acts predominantly local.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-05-01
    Print ISSN: 0038-1098
    Electronic ISSN: 1879-2766
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...