ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A project has been initiated at the Marshall Space Flight Center to determine if preburner inter- or intra-element mixture ratio maldistributions are the cause of temperature variations in the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine inlet region. Temperature nonuniformity may contribute to the many problems experienced in this region. The project will involve high pressure cold-flow testing and Computational Fluid Dynamics (CFD) modeling.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: Pennsylvania State Univ., NASA Propulsion Engineering Research Center, Volume 2; p 46-49
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air Breathing Launch Vehicle 4 (ABLV4) lifting body configuration which has design heritage from NASA's NASP Program. The vehicle will be designed to accelerate from Mach 0.8 to Mach 7 and will be equipped with landing gear for horizontal landing. The complete vehicle, including the engine, will be designed for 25 flights and will be approximately 33 feet long with a total vehicle weight of approximately 25000 lbs.
    Keywords: Space Transportation and Safety
    Type: 52nd International Astronautical Congress; Oct 01, 2001 - Oct 05, 2001; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: NASA is working toward the first launch of a new, unmatched capability for deep space exploration, with launch readiness planned for 2018. The initial Block 1 configuration of the Space Launch System will more than double the mass and volume to Low Earth Orbit (LEO) of any launch vehicle currently in operation - with a path to evolve to the greatest capability ever developed. The program formally began in 2011. The vehicle successfully passed Preliminary Design Review (PDR) in 2013, Key Decision Point C (KDPC) in 2014 and Critical Design Review (CDR) in October 2015 - nearly 40 years since the last CDR of a NASA human-rated rocket. Every major SLS element has completed components of test and flight hardware. Flight software has completed several development cycles. RS-25 hotfire testing at NASA Stennis Space Center (SSC) has successfully demonstrated the space shuttle-heritage engine can perform to SLS requirements and environments. The five-segment solid rocket booster design has successfully completed two full-size motor firing tests in Utah. Stage and component test facilities at Stennis and NASA Marshall Space Flight Center are nearing completion. Launch and test facilities, as well as transportation and other ground support equipment are largely complete at NASA's Kennedy, Stennis and Marshall field centers. Work is also underway on the more powerful Block 1 B variant with successful completion of the Exploration Upper Stage (EUS) PDR in January 2017. NASA's approach is to develop this heavy lift launch vehicle with limited resources by building on existing subsystem designs and existing hardware where available. The systems engineering and integration (SE&I) of existing and new designs introduces unique challenges and opportunities. The SLS approach was designed with three objectives in mind: 1) Design the vehicle around the capability of existing systems; 2) Reduce work hours for nonhardware/ software activities; 3) Increase the probability of mission success by focusing effort on more critical activities.
    Keywords: Lunar and Planetary Science and Exploration; Spacecraft Design, Testing and Performance; Launch Vehicles and Launch Operations
    Type: M17-5932 , Annual AIAA Space and Astronautics Forum and Exposition 2017 (AIAA SPACE 2017); Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: NASA is working toward the first launch of the Space Launch System, a new, unmatched capability for deep space exploration with launch readiness planned for 2019. Since program start in 2011, SLS has passed several major formal design milestones, and every major element of the vehicle has produced test and flight hardware. The SLS approach to systems engineering has been key to the program's success. Key aspects of the SLS SE&I approach include: 1) minimizing the number of requirements, 2) elimination of explicit verification requirements, 3) use of certified models of subsystem capability in lieu of requirements when appropriate and 4) certification of capability beyond minimum required capability.
    Keywords: Engineering (General); Launch Vehicles and Launch Operations
    Type: M17-6191 , AIAA Space and Astronautics Forum and Exposition; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: A rocket engine assembly is provided for a vertically launched rocket vehicle. A rocket engine housing of the assembly includes two or more combustion chambers each including an outlet end defining a sonic throat area. A propellant supply for the combustion chambers includes a throttling injector, associated with each of the combustion chambers and located opposite to sonic throat area, which injects the propellant into the associated combustion chamber. A modulator, which may form part of the injector, and which is controlled by a controller, modulates the flow rate of the propellant to the combustion chambers so that the chambers provide a vectorable net thrust. An expansion nozzle or body located downstream of the throat area provides expansion of the combustion gases produced by the combustion chambers so as to increase the net thrust.
    Keywords: Launch Vehicles and Launch Operations
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: NASA's plan for the next generation of launch vehicles requires enabling combustion devices technology Technology funding in recent years has been weak and scattered Strong complementary capability exists in other organizations. examples include: AFRL, GRC, academia, rocketdyne, and aerojet. MSFC would like to serve a key role in coordinating and industry wide plan MSFC in-house efforts will focus on "filling holes" that are appropriate for our capabilities and charter.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: 49th Joint Propulsion Meeting; Dec 14, 1999 - Dec 16, 1999; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The National Aeronautics and Space Administration is currently developing the Space Launch System to provide the United States with a capability to launch large Payloads into Low Earth orbit and deep space. One of the development tenets of the SLS Program is affordability. One initiative to enhance affordability is the SLS approach to requirements definition, verification and system certification. The key aspects of this initiative include: 1) Minimizing the number of requirements, 2) Elimination of explicit verification requirements, 3) Use of certified models of subsystem capability in lieu of requirements when appropriate and 4) Certification of capability beyond minimum required capability. Implementation of each aspect is described and compared to a "typical" systems engineering implementation, including a discussion of relative risk. Examples of each implementation within the SLS Program are provided.
    Keywords: Launch Vehicles and Launch Operations
    Type: M17-5627 , AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...