ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-01-01
    Description: The EK500 has been the state-of-the-art scientific echosounder for surveying marine fish stocks for over a decade; the EK60 is its successor. Ensuring comparability in performance is vital during the transition from the EK500 to the EK60. To quantify the respective performances, each echosounder was calibrated in tandem by the standard-target method using the same 38-kHz, 12° beam width, split-beam transducer, with alternating pinging by means of an external triggering-and-switching system. The principal measurements comprised split-beam-determined angle and target strength, on-axis sensitivity, and directionality in the plane normal to the acoustic axis, as measured with a 60-mm-diameter copper sphere. Ambient noise, including volumetric reverberation, was also measured. Principal comparisons included those of the time-series and histograms of split-beam-determined target strength; respective alongship and athwartship angles as determined by the split-beam system; and as expected, difference in the split-beam-determined and experimental target-strength values in the plane normal to the acoustic axis. The mean absolute difference in off-axis angle values was also compared. While the performance of the two echosounders is generally similar, systematic differences exist. For the particular calibration measurements, the time variability in measurements of on-axis target strength was of the order of 1 dB for the EK500 and 2 dB for the EK60. The target-strength distribution for measurements made with the EK500 was normal, with standard deviation 0.2–0.3 dB, whereas for the EK60, the target-strength distribution was distinctly skewed and the standard deviation varied over 0.3–0.5 dB. Differences were found between the split-beam and physical-angle measurements. They were noticeably larger in the case of the EK60. Differences in performance between the two echosounders suggest refinements to the new system that will help realize its full potential in scientific work.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 2013-2027, doi:10.1121/1.1869073.
    Description: Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned.
    Description: Support by the National Science Foundation through Award No. OCE-0002664, NOAA through Grant No. NA97OG0241, and the Cooperative Institute for Climate and Ocean Research (CICOR) through NOAA Contract No. NA17RJ1223 is acknowledged.
    Keywords: Sonar detection ; Sonar target recognition ; Underwater sound ; Calibration ; Array signal processing ; Acoustic transducer arrays ; Protocols
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...