ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-22
    Description: Journal of the American Chemical Society DOI: 10.1021/jacs.8b04647
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The requirement for scatterometer-combined transmit-receive gain variation knowledge is typically addressed by sampling a portion of the transmit signal, attenuating it with a known-stable attenuation, and coupling it into the receiver chain. This way, the gain variations of the transmit and receive chains are represented by this loop-back calibration signal, and can be subtracted from the received remote radar echo. Certain challenges are presented by this process, such as transmit and receive components that are outside of this loop-back path and are not included in this calibration, as well as the impracticality for measuring the transmit and receive chains stability and post fabrication separately, without the resulting measurement errors from the test set up exceeding the requirement for the flight instrument. To cover the RF stability design challenge, the portions of the scatterometer that are not calibrated by the loop-back, (e.g., attenuators, switches, diplexers, couplers, and coaxial cables) are tightly thermally controlled, and have been characterized over temperature to contribute less than 0.05 dB of calibration error over worst-case thermal variation. To address the verification challenge, including the components that are not calibrated by the loop-back, a stable fiber optic delay line (FODL) was used to delay the transmitted pulse, and to route it into the receiver. In this way, the internal loopback signal amplitude variations can be compared to the full transmit/receive external path, while the flight hardware is in the worst-case thermal environment. The practical delay for implementing the FODL is 100 s. The scatterometer pulse width is 1 ms so a test mode was incorporated early in the design phase to scale the 1 ms pulse at 100-Hz pulse repetition interval (PRI), by a factor of 18, to be a 55 s pulse with 556 s PRI. This scaling maintains the duty cycle, thus maintaining a representative thermal state for the RF components. The FODL consists of an RF-modulated fiber-optic transmitter, 20 km SMF- 28 standard single-mode fiber, and a photodetector. Thermoelectric cooling and insulating packaging are used to achieve high thermal stability of the FODL components. The chassis was insulated with 1-in. (.2.5-cm) thermal isolation foam. Nylon rods support the Micarta plate, onto which are mounted four 5-km fiber spool boxes. A copper plate heat sink was mounted on top of the fiber boxes (with thermal grease layer) and screwed onto the thermoelectric cooler plate. Another thermal isolation layer in the middle separates the fiberoptics chamber from the RF electronics components, which are also mounted on a copper plate that is screwed onto another thermoelectric cooler. The scatterometer subsystem fs overall stability was successfully verified to be calibratable to within 0.1 dB error in thermal vacuum (TVAC) testing with the fiber-optic delay line, while the scatterometer temperature was ramped from 10 to 30 C, which is a much larger temperature range than the worst-case expected seasonal variations.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47559 , NASA Tech Briefs, July 2011; 23-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: An improved method of measuring chromatic dispersion in an optical fiber or other device affords a lower (relative to prior such methods) limit of measurable dispersion. This method is a modified version of the amplitude-modulation (AM) method, which is one of the prior methods. In comparison with the other prior methods, the AM method is less complex. However, the AM method is limited to dispersion levels . 160 ps/nm and cannot be used to measure the symbol of the dispersion. In contrast, the present modified version of the AM method can be used to measure the symbol of the symbol of the dispersion and affords a measurement range from about 2 ps/nm to several thousand ps/nm with a resolution of 0.27 ps/nm or finer. The figure schematically depicts the measurement apparatus. The source of light for the measurement is a laser, the wavelength of which is monitored by an optical spectrum analyzer. A light-component analyzer amplitude-modulates the light with a scanning radio-frequency signal. The modulated light is passed through a buffer (described below) and through the device under test (e.g., an optical fiber, the dispersion of which one seeks to measure), then back to the light-component analyzer for spectrum analysis. Dispersion in the device under test gives rise to phase shifts among the carrier and the upper and lower sideband components of the modulated signal. These phase shifts affect the modulation-frequency component of the output of a photodetector exposed to the signal that emerges from the device under test. One of the effects is that this component goes to zero periodically as the modulation frequency is varied.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30406 , NASA Tech Briefs, November 2004; 6-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.
    Keywords: Optics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: An array of three antennas has recently been developed at the NASA Jet Propulsion Laboratory capable of detecting signals at X and Ka band. The array requires a common frequency reference and high precision phase alignment to correlate received signals. Frequency and timing references are presently provided from a remotely located hydrogen maser and clock through a combination of commercially and custom developed optical links. The selected laser, photodetector, and fiber components have been tested under anticipated thermal and simulated antenna rotation conditions. The resulting stability limitations due to thermal perturbations or induced stress on the optical fiber have been characterized. Distribution of the X band local oscillator includes a loop back and precision phase monitor to enable correlation of signals received from each antenna.
    Keywords: Communications and Radar
    Type: Proceedings of the 2006 IEEE International Frequency Control Symposium; 637-641|IEEE International Frequency Control Symposium; Jun 05, 2006 - Jun 07, 2006; Miami, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: An architecture for arraying microwave antennas in the next generation of NASA s Deep Space Network (DSN) involves the use of all photonic links between (1) the antennas in a given array and (2) a signal processing center. In this architecture, all affected parts at each antenna pedestal [except a front-end low-noise amplifier for the radio-frequency (RF) signal coming from the antenna and an optical transceiver to handle monitor and control (M/C) signals] would be passive optical parts
    Keywords: Optics
    Type: NPO-44130 , NASA Tech Briefs, December 2009; 11-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.
    Keywords: Optics
    Type: ION 2013 Precise Time and Time Interval Meeting; Dec 02, 2013 - Dec 05, 2013; Bellevue, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...