ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-15
    Description: The atmospheric partial pressure of CO2 (pCO2) has been increasing dramatically since the beginning of the industrial revolution and about 30% of the CO2 produced by anthropogenic activities was absorbed by the ocean. This led to a perturbation of the seawater carbonate chemistry resulting in a decrease of the average surface ocean pH by 0.1 and termed ocean acidification (OA). Projections suggest that pCO2 may reach 900 μatm by the end of the twenty-first century lowering the average pH of the surface ocean by 0.4 units. The negative impacts of OA on many species of marine invertebrates such as mollusks, echinoderms, and crustaceans are well documented. However, less attention has been paid to the impacts of low pH on fitness and immune system in crustaceans. Here, we exposed Pacific white shrimps to 3 different pHs (nominal pH 8.0, 7.9, and 7.6) over a 100-days experiment. We found that, even though there were no significant effects on fitness parameters (survival, growth and allometries between length and weight), some immune markers were modified under low pH. A significant decrease in total hemocyte count and phenoloxidase activity was observed in shrimps exposed to pH 7.6 as compared to pH 8.0; and phagocytosis rate significantly decreased with decreasing pH. A significant increase in superoxide production was also observed at pH 7.6 as compared to pH 8.0. All these results suggest that a 100-days exposure to pH 7.6 did not have a direct effect on fitness but lead to a modulation of the immune response.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Arthropoda; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Hemocytes; Identification; Laboratory experiment; Laboratory strains; Length; Litopenaeus vannamei; Mass; Mortality/Survival; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phagocytic activity; Phagocytosis; Potentiometric; Salinity; Salinity, standard deviation; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Superoxide production; Survival; Temperature, water; Temperature, water, standard deviation; Treatment: pH; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 297 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-06
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-06
    Description: Hypoxic events are becoming frequent in some estuaries and coastal waters due to over-enrichment of anthropogenic nutrients, organic matter, and/or due to restricted water circulation. The coastal lagoons and estuaries of Sri Lanka are facing high population pressure and lacking sufficient infrastructure. Coastal lagoons may receive high anthropogenic inputs of natural or untreated nitrogen and phosphorus wastes, and consequently result in hypoxic conditions while sluggish circulation occurred. In this study, we examined the spatiotemporal variability of eutrophication and hypoxia in the Negombo Lagoon, one of the most productive and sensitive coastal ecosystems in Sri Lanka. Based on seasonal measurements of dissolved oxygen, nutrients, chlorophyll-a (Chl-a), particulate and dissolved organic carbon (POC and DOC), we concluded that eutrophication and hypoxia occurred in both the dry and wet seasons. The main contributing factors were high seawater temperature and poor water circulation in the dry season and high nutrient loading combined with elevated POC and DOC inputs in the wet season.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-27
    Description: Recent research has revealed that shrimp sensory quality may be affected by ocean acidification but we do not exactly know why. Here we conducted controlled pH exposure experiments on adult tiger shrimp, which were kept in 1000-L tanks continuously supplied with coastal seawater. We compared survival rate, carapace properties and flesh sensory properties and amino acid composition of shrimp exposed to pH 7.5 and pH 8.0 treatments for 28 days. Shrimp reared at pH 7.5 had a lower amino acid content (17.6% w/w) than those reared at pH 8.0 (19.5% w/w). Interestingly, the amino acids responsible for the umami taste, i.e. glutamate and aspartic acid, were present at significantly lower levels in the pH 7.5 than the pH 8.0 shrimp, and the pH 7.5 shrimp were also rated as less desirable in a blind quality test by 40 volunteer assessors. These results indicate that tiger shrimp may become less palatable in the future due to a lower production of some amino acids. Finally, tiger shrimp also had a lower survival rate over 28 days at pH 7.5 than at pH 8.0 (73% vs. 81%) suggesting that ocean acidification may affect both the quality and quantity of future shrimp resources.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...