ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: Running on a treadmill with bungee-cord resistance is currently used on the Russian space station MIR as a countermeasure for the loss of bone and muscular strength which occurs during spaceflight. However, it is unknown whether ground reaction force (GRF) at the feet using bungee-cord resistance is similar to that which occurs during upright walking and running on Earth. We hypothesized-that the DRAMs generated during upright walking and running are greater than the DRAMs generated during supine bungee-cord gait. Eleven healthy subjects walked (4.8 +/- 0.13 km/h, mean +/- SE) and ran (9.1 +/- 0.51 km/h) during upright and supine bungee-cord exercise on an active treadmill. Subjects exercised for 3 min in each condition using a resistance of 1 body weight calibrated during an initial, stationary standing position. Data were sampled at a frequency of 500Hz and the mean of 3 trials was analyzed for each condition. A repeated measures analysis of variance tested significance between the conditions. Peak DRAMs during upright walking were significantly greater (1084.9 +/- 111.4 N) than during supine bungee-cord walking (770.3 +/- 59.8 N; p less than 0.05). Peak GRFs were also significantly greater for upright running (1548.3 +/- 135.4 N) than for supine bungee-cord running (1099.5 +/- 158.46 N). Analysis of GRF curves indicated that forces decreased throughout the stance phase for bungee-cord gait but not during upright gait. These results indicate that bungee-cord exercise may not create sufficient loads at the feet to counteract the loss of bone and muscular strength that occurs during long-duration exposure to microgravity.
    Keywords: Aerospace Medicine
    Type: Experimental Biology ''98; Apr 18, 1998 - Apr 22, 1998; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.
    Keywords: Aerospace Medicine
    Type: Experimental Biology ''98; Apr 18, 1998 - Apr 22, 1998; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: This study was designed to investigate effects of whole body tilting on intracranial compliance and pressure in six healthy volunteers by using a noninvasive ultrasonic device. Subjects were randomly tilted up or down sequentially at 60 degree, 30 degree head-up, supine, and 15 degree head-down position for one minute at each angle. We measured arterial blood pressure with a finger pressure cuff and changes in intracranial distance with an ultrasonic device. The device measures skull movement on the order of micro-meter. Our ultrasound technique demonstrates that skull movement is highly correlated (r$(circumflex){2}$=0.77) with intracranial pressure variations due to cerebral arterial pulsation. The amplitudes of arterial pressure (r$(circumflex){2}$=0.99 and those of intracranial distance changes (r$(circumflex){2}$=0.87) associated with one cardiac cycle were inversely correlated with the angle of tilt. The ratio of pulsation amplitudes for intracranial distance over arterial pressure also showed a significant increase as the angle of tilt was lowered (p=0.003). Thus, postural changes alter intracranial compliance in healthy volunteers and intracranial volume-buffering capacity is reduced in head-down position.
    Keywords: Aerospace Medicine
    Type: Experimental Biology 1998; Apr 18, 1998 - Apr 22, 1998; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Snakes are useful vertebrates for studies of gravitational adaptation, owing to their elongate body and behavioral diversification. Scansorial species have evolved specializations for regulating hemodynamics during exposure to gravitational stress, whereas, such adaptations are less well developed in aquatic and non-climbing species. We examined responses of the amphibious snake,\italicize (Nerodia rhombifera), to increments of Gz (head-to-tail) acceleration force on both a short- and long-arm centrifuge (1.5 vs. 3.7 m radius, from the hub to tail end of snake). We recorded heart rate, dorsal aortic pressure, and carotid arterial blood flow during stepwise 0.25 G increments of Gz force (referenced at the tail) in conscious animals. The Benz tolerance of a snake was determined as the Gz level at which carotid blood flow ceased and was found to be significantly greater at the short- than long-arm centrifuge radius (1.57 Gz vs. 2.0 Gz, respectively; P=0.016). A similar pattern of response was demonstrated in semi-arboreal rat snakes,\italicize{Elaphe obsoleta}, which are generally more tolerant of Gz force (2.6 Gz at 1.5m radius) than are water snakes. The tolerance differences of the two species reflected cardiovascular responses, which differed quantitatively but not qualitatively: heart rates increased while arterial pressure and blood flow decreased in response to increasing levels of Gz. Thus, in both species of snakes, a reduced gradient of Gz force (associated with greater centrifuge radius) significantly decreases the Gz level that can be tolerated.
    Keywords: Life Sciences (General)
    Type: Experimental Biology ''98; Apr 18, 1998 - Apr 22, 1998; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: One of the main characteristics of calcium (Ca) metabolism during space flight and the human bed rest model for microgravity is negative Ca balance, attributed, to an increase in urinary Ca excretion and depressed intestinal Ca absorption. No differences or less positive Ca balances are reported after skeletal unloading in similar studies in weaning or juvenile rats. To determine Ca balances and evaluate the Ca endocrine system in mature rats exposed to a space flight model which unloaded the hind limbs by tail suspension, we modified the cage to quantify dietary, fecal and urinary Ca. Five 2-5 d balance periods in 8 loaded (C) and 8 unloaded (S) rats were compared during a 4 week study in 6 month old 490 g male rats. The first period revealed negative balances of -16+/-3 and -14+/-5 mg/d which reflected adaptation to the cages, the change in diet from Purina to AIN 76 and weight loss in both C and S. Average Ca balances in rats fed 0.1% Ca and 0.3% phosphorus (Pi) diets, remained negative in S and were less than C after 6 -10 d (-2.9 vs 0.12 mg/d, p〈.05) but not thereafter. In spite of eating 10% more food than C, initial weight loss, restored in C, was never recovered in S. Fecal excretion exceeded dietary intake by -3.7% in S and reflected absorption and retention of 8.4% dietary Ca in C. Urinary Ca was the same fraction of dietary intake in S and C (9.0 vs 8.6%, NS). Serum Ca, Pi, parathyroid hormone and 1,25-dihydroxyvitamin D were the same in both groups after 28 days. In contrast to the human, a major determinant of negative Ca balance in the mature rat exposed to a space flight model appears to be losses from gastrointestinal Ca secretion, rather than urinary Ca excretion.
    Keywords: Life Sciences (General)
    Type: Tenth Workshop on Vitamin D; May 24, 1997 - May 29, 1997; Strasbourg; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: By virtue of its tallness and terrestrial environment, the giraffe is a uniquely sensitive African animal to investigate tissue adaptations to gravitational stress. One decade ago, we studied transcapillary fluid balance and local tissue adaptations to high cardiovascular and musculoskeletal loads in adult and fetal giraffes. Previous studies by Goetz, Pattersson, Van Citters, Warren and their colleagues revealed that arterial pressure near the giraffe heart is about twice that in humans, to provide more normal blood pressure and perfusion to the brain. Another important question is how giraffes avoid pooling of blood and tissue fluid (edema) in dependent tissue of the extremities. As monitored by radiotelemetry, the blood and tissue fluid pressures that govern transcapillary exchange vary greatly with exercise. These pressures, combined with a tight skin layer, move fluid upward against gravity. Other mechanisms that prevent edema include precapillary vasoconstriction and low permeability of capillaries to plasma proteins. Other anatomical adaptations in dependent tissues of giraffes represent developmental adjustments to high and variable gravitational forces. These include vascular wall hypertrophy, thickened capillary basement membrane and other connective tissue adaptations. Our results in giraffe suggest avenues of future gravitational research in other animals including humans.
    Keywords: Life Sciences (General)
    Type: International Conference on Comparative Physiology and Biochemistry; Aug 31, 1997 - Sep 05, 1997; Skukuza; South Africa
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: Discrimination of facial features degrades with stimulus rotation (e.g., the "Margaret Thatcher" effect). Thirty-two observers learned to discriminate between two upright, or two inverted, faces. Images, erect and rotated by +/-45deg, +/-90deg, +/-135deg and 180deg about the line of sight, were presented on a computer screen. Initial discriminative reaction times increased with stimulus rotation only for observers who learned the upright faces. Orientation during learning is critical in identifying faces subsequently seen at different orientations.
    Keywords: Behavioral Sciences
    Type: Psychonomic Society, Inc. 38th Annual Meeting; Nov 20, 1997 - Nov 23, 1997; Philadelphia, PA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: Gravity alters local blood pressure within the body so that arterial pressures in the head and foot are lower and higher, respectively, than that at heart level. Furthermore, vascular responses to local alterations of arterial pressure are probably important to maintain orthostatic tolerance upon return to the Earth after space flight. However, it has been difficult to evaluate the body's arterial pressure gradient due to the lack of noninvasive technology. This study was therefore designed to investigate whether finger arterial pressure (FAP), measured noninvasively, follows a normal hydrostatic pressure gradient above and below heart level during upright posture and 30 deg head down tilt (HDT). Seven healthy subjects gave informed consent and were 19 to 52 years old with a height range of 158 to 181 cm. A Finapres device measured arterial pressure at different levels of the body by moving the hand from 36 cm below heart level (BH) to 72 cm above heart level (AH) in upright posture and from 36 cm BH to 48 cm AH during HDT in increments of 12 cm. Mean FAP creased by 85 mmHg transitioning from BH to AH in upright posture, and the pressure gradient calculated from hydrostatic pressure difference (rho(gh)) was 84 mmHg. In HDT, mean FAP decreased by 65 mmHg from BH to AH, and the calculated pressure gradient was also 65 mmHg. There was no significant difference between the measured FAP gradient and the calculated pressure gradient, although a significant (p = 0.023) offset was seen for absolute arterial pressure in upright posture. These results indicate that arterial pressure at various levels can be obtained from the blood pressure at heart level by calculating rho(gh) + an offset. The offset equals the difference between heart level and the site of measurement. In summary, we conclude that local blood pressure gradients can be measured by noninvasive studies of FAP.
    Keywords: Aerospace Medicine
    Type: American Society for Gravitational and Space Biology; Nov 19, 1997 - Nov 22, 1997; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: The reported absence of egocentric localization errors when pointing open-loop at the vertices of the Mueller-Lyer (M-L) illusion figure was confirmed in several studies which were designed to ensure the normal strength of the illusion during the pointing responses. However, when one of the two 'fins' was removed, the resulting M-L figure was substantially mislocalized. A theory of the expanding and contracting spatial effects of fins is proposed to explain these results.
    Keywords: Behavioral Sciences
    Type: The Psychonomic Society, Inc., 38th Annual Meeting; Nov 20, 1997 - Nov 23, 1997; Philadelphia, PA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: The urinary excretion of deoxypyridinoline (U-Dpd), a nonreducible collagen crosslink in bone released by osteoclastic activity, is thought to be an accurate marker of bone resorption. The role of increased resorption in the osteopenia of a space flight model which unloads the hindlimbs by suspending the tail is controversial. To assess skeletal resorption in the model we measured U-Dpd (Pyrilinks-D, Metro Biosystems, Inc.) in serial 24 hour urine specimens collected from 250 a (Y) and 450 a (M) male rats with unloaded hindlimbs for four weeks. Both groups of rats were fed AIN76 diets with calcium restricted to 0.2% in Y and to 0.1 % in M. Blood was obtained after 28 days for parathyroid hormone (PTH), 1,25-dihydroxyvitamin D (1,25-D) and alkaline phosphatase (Alkptase). Basal U-Dpd was higher and more variable in Y than M (475+/-200 vs 67+/-9, nM/mM creatinine, p〈.001). Repeated measures ANOVA in Y revealed decreases in U-Dpd, 36% in control (C) and 24% in unloaded (S) rats (p〈.005). There was a nadir in YS on the 14th day not observed in YC (p〈.05). U-Dpd in MC showed no change, but increased in MS by the 14th day and remained elevated. At the end of the experiment, body weights in both Y and M were less in S than C (337+/-16 vs 306+/-12g and 485+/-10 vs 461+/-6g, p=.002). Bill was inversely related to U-Dpd only in M (r=0.699, p=.024). PTH, similar in C and S in Y (52+/-15 vs 42+/-7pg/ml, NS) and M (68+/-13 vs 61+/-12, NS), was unrelated to U-Dpd. 1,25-D tended toward higher values in YC than YS (197+/-103 vs 119+/-30, NS) and correlated with U-Dpd (0.773, p=.015). Alkptase, 1.3 times higher in Y than M, was similar in C and S at the end of unloading. These findings indicate that bone resorption, as reflected by U-Dpd, is suppressed in young and stimulated in mature rats exposed to a space flight model. U-Dpd reflects reduced growth from the diet change in young control and experimental rats and loss of Bill in mature animals exposed to the space flight model, 2 situations with opposite effects on bone resorption.
    Keywords: Life Sciences (General)
    Type: 18th Annual Meeting of the American Society for Bone and Mineral Research; Sep 10, 1997 - Sep 14, 1997; Cincinnatti, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...