ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2015-02-16
    Description: On Earth, oceanic plates subduct beneath a variety of overriding plate (OP) styles, from relatively thin and negatively buoyant oceanic OPs to thick and neutrally/positively buoyant continental OPs. The inclusion of an OP in numerical models of self-consistent subduction has been shown to reduce the rate that subducting slabs roll back relative to the equivalent single plate models. We use dynamic, 2-D subduction models to investigate how the mechanical properties, namely viscosity, thickness, and density, of the OP modify the slab rollback rate and the state of stress of the OP. In addition, we examine the role of the subducting plate (SP) viscosity. Because OP deformation accommodates the difference between the slab rollback rate and the far-field OP velocity, we find that the temporal variations in the rollback rate results in temporal variations in OP stress. The slabs in our models roll back rapidly until they reach the lower mantle viscosity increase, at which point the rollback velocity decreases. Concurrent with this reduction in rollback rate is a switch from an OP dominated by extensional stresses to a compressional OP. As in single plate models, the viscosity of the SP exerts a strong control on subducting slab kinematics; weaker slabs exhibit elevated sinking velocities and rollback rates. The SP viscosity also exerts a strong control on the OP stress regime. Weak slabs, either due to reduced bulk viscosity or stress-dependent weakening, have compressional OPs, while strong slabs have dominantly extensional OPs. While varying the viscosity of the OP alone does not substantially affect the OP stress state, we find that the OP thickness and buoyancy plays a substantial role in dictating the rate of slab rollback and OP stress state. Models with thick and/or negatively buoyant OPs have reduced rollback rates, and increased slab dip angles, relative to slabs with thin and/or positively buoyant OPs. Such elevated trench rollback for models with positively buoyant OPs induces extensional stresses in the OP, while OPs that are strongly negatively buoyant are under compression. While rollback is driven by the negative buoyancy of the subducting slab in such models of free subduction, we conclude that the physical properties of the OP potentially play a significant role in modulating both rollback rates and OP deformation style on Earth.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...