ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Language
Years
  • 1
    Publication Date: 2023-01-27
    Description: Tourmaline-cemented magmatic-hydrothermal breccias are a major host to sulphide mineralization in the supergiant Río Blanco–Los Bronces (RB–LB) porphyry Cu-Mo district in central Chile. We made an extensive study of the chemical and boron isotopic composition of tourmaline from this district to shed light on the composition and origin of mineralizing fluids and to test the utility of tourmaline as an indicator mineral by comparing compositions from mineralized and barren breccias. Río Blanco-Los Bronces is a world-class porphyry-type Cu-Mo district of late Miocene age hosted in a granodioritic batholith and related porphyry intrusions in central Chile (33°9’ S latitude, 70°17’W longitude). The porphyry intrusions and related orebodies are distributed along a structurally-controlled NW-SE zone. Mineralization comprises quartz-sulfide veins, disseminated sulfide miner-alization in altered porphyry host rocks and disseminated sulfides in hydrothermal breccias. See Toro et al. (2012) for an overview of the geology, geochronology and mineralization in the district. Descriptions of the mineralized tourmaline breccias are given by Frikken et al. (2005) and Skewes et al. (2003). The data set provided here comprises in-situ chemical analyses of tourmaline by electron microprobe (EPMA) as well as in-situ boron-isotope analyses of tourmaline in the same samples by SIMS. Tourmaline was analysed in 12 samples including 8 from mineralized breccia bodies (Sur-Sur: 4, La Americana: 4), and 2 samples each from barren breccia and nearby granite-hosted tourmaline nodules in the Diamante area. We also give results of mass balance calculations testing the hypoth-esis of a magmatic-hydrothermal origin of the boron.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-11
    Description: Tourmaline-cemented breccia bodies host much of the ore in the Río Blanco-Los Bronces porphyry Cu-Mo deposits. We determined the chemical and B isotope composition of tourmaline as well as S isotope ratios of anhydrite and sulfide minerals to shed light on the composition and origin of mineralizing fluids. Also, the utility of tourmaline as an indicator mineral was tested by comparing mineralized and barren breccias. Tourmaline in mineralized samples has a narrow Mg range (1.5–2 apfu) and variable, generally low Al contents (4–6.5 apfu). A strong negative correlation of Al with Fe indicates monovalent substitution of Al and Fe3+, implying relatively oxidizing fluids. In contrast, tourmaline from barren breccias has a narrower Al range (6–7 apfu), lower and more variable Mg (0.2–2.5 apfu), and a strong negative Mg-Fe correlation, suggesting more reduced fluids with a dominance of Fe2+. These features and the implications of redox contrast may have exploration significance. Tourmaline from all breccia samples yielded δ11B values from 1.8 to 7.9‰. A magmatic source of boron is concluded from the identical B isotope values of granite-hosted tourmaline in the district (1.2–7.7‰) and from the similar range of regional volcanic and porphyry rocks in the Central Andes. The δ34S values of coexisting anhydrite (11.6–14.5‰) and chalcopyrite (–1.5 to –0.2‰) in mineralized breccia give S isotope exchange temperatures of 377° to 437°C, consistent with fluid inclusion temperatures. Total sulfur δ34Sfluid estimates between 1.4 ± 3.9 and 8.8 ± 1.3‰ are broadly consistent with a magmatic source but not well constrained. However, published O and H isotope ratios of quartz and tourmaline from the Río Blanco-Los Bronces breccias have a clear magmatic signature, so this is the preferred scenario. Mass balance simulations of the boron budget show that typical magma flux rates, water contents, and boron concentration for the Central Andes could produce the estimated 107 tons of boron in the Río Blanco-Los Bronces breccias within the 4-m.y. duration of porphyry intrusions if (1) magma accumulated and evolved at midcrustal levels before emplacement and (2) boron partitioned strongly to the fluid phase (DBfluid/melt 〉 3).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...