ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A method for teleoperator control which offers advantages over previous techniques is demonstrated. In the new method, a fundamental variable exchanged between the master and slave is the rate of change in position and force. An inherent capability of the control scheme is demonstrated for transition between control methods based on environmental constraints in a manner natural to the operator. Specifically, rate control of a manipulator makes the transition to force-force control when a force-reflecting hand controller is used with a local force accommodation algorithm running on the remote manipulator. The transition from rate to force occurs when contact is made with the environment.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: AIAA PAPER 92-1452
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: To increase quantified information about the effectiveness and subjective workload of force information relayed through manipulator input control devices, a space related task was performed by eight subjects with kinesthetic force feedback and/or local force accommodation through three different input control devices (i.e., hand controllers) operating in rate control mode. Task completion time, manipulator work, and subjective responses were measured. Results indicated a difference among the hand controllers. For the Honeywell six degree-of-freedom hand controller, the overall task completion times were shortest, the amount of work exerted was the least, and was the most preferred by test subjects. Neither force accommodation with or without reflection resulted in shorter task completion times or reduced work although those conditions were better than no force information for some aspects. Comparisons of results from previous studies are discussed.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: AIAA PAPER 92-1451
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2013-218144 , L-20330 , NF1676L-17460
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper addresses the problem of building trust in the online prediction of a battery powered aircraft's remaining flying time. A series of flight tests is described that make use of a small electric powered unmanned aerial vehicle (eUAV) to verify the performance of the remaining flying time prediction algorithm. The estimate of remaining flying time is used to activate an alarm when the predicted remaining time is two minutes. This notifies the pilot to transition to the landing phase of the flight. A second alarm is activated when the battery charge falls below a specified limit threshold. This threshold is the point at which the battery energy reserve would no longer safely support two repeated aborted landing attempts. During the test series, the motor system is operated with the same predefined timed airspeed profile for each test. To test the robustness of the prediction, half of the tests were performed with, and half were performed without, a simulated powertrain fault. The pilot remotely engages a resistor bank at a specified time during the test flight to simulate a partial powertrain fault. The flying time prediction system is agnostic of the pilot's activation of the fault and must adapt to the vehicle's state. The time at which the limit threshold on battery charge is reached is then used to measure the accuracy of the remaining flying time predictions. Accuracy requirements for the alarms are considered and the results discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: NF1676L-26923 , Annual Conference of the Prognostics and Health Management Society (PHM) 2017; Oct 02, 2017 - Oct 05, 2017; St. Petersburg , FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: The Linear Autoland Simulink model was created to be a modular test environment for testing of control system components in commercial aircraft. The input variables, physical laws, and referenced frames used are summarized. The state space theory underlying the model is surveyed and the location of the control actuators described. The equations used to realize the Dryden gust model to simulate winds and gusts are derived. A description of the pseudo-random number generation method used in the wind gust model is included. The longitudinal autopilot, lateral autopilot, automatic throttle autopilot, engine model and automatic trim devices are considered as subsystems. The experience in converting the Airlabs FORTRAN aircraft control system simulation to a graphical simulation tool (Matlab/Simulink) is described.
    Keywords: Aircraft Stability and Control
    Type: NASA/CR-2004-213021
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-23
    Description: This paper addresses the problem of building trust in the online prediction of a eUAVs remaining available flying time powered by lithium-ion polymer batteries. A series of ground tests are described that make use of an electric unmanned aerial vehicle (eUAV) to verify the performance of remaining flying time predictions. The algorithm verification procedure described is implemented on a fully functional vehicle that is restrained to a platform for repeated run-to-functional-failure (charge depletion) experiments. The vehicle under test is commanded to follow a predefined propeller RPM profile in order to create battery demand profiles similar to those expected during flight. The eUAV is repeatedly operated until the charge stored in powertrain batteries falls below a specified limit threshold. The time at which the limit threshold on battery charge is crossed is then used to measure the accuracy of the remaining flying time prediction. In our earlier work battery aging was not included. In this work we take into account aging of the batteries where the parameters were updated to make predictions. Accuracy requirements are considered for an alarm that warns operators when remaining flying time is estimated to fall below the specified limit threshold.
    Keywords: Aircraft Design, Testing and Performance
    Type: NF1676L-29272 , NF1676L-27683 , International Journal of Prognostics and Health Management (ISSN 2153-2648); 9; 021
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A low cost, rapid evaluation, test aircraft is used to develop and test airframe damage diagnosis algorithms at Langley Research Center as part of NASA's Aviation Safety Program. The remotely operated subscale aircraft is instrumented with sensors to monitor structural response during flight. Data is collected for good and compromised airframe configurations to develop data driven models for diagnosing airframe state. This paper describes the data acquisition system (DAS) of the rapid evaluation test aircraft. A PC/104 form factor DAS was developed to allow use of Matlab, Simulink simulation code in Langley's existing subscale aircraft flight test infrastructure. The small scale of the test aircraft permitted laboratory testing of the actual flight article under controlled conditions. The low cost and modularity of the DAS permitted adaptation to various flight experiment requirements.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: NASA/TM-2011-217145 , L-19991 , NF1676L-12233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: This paper addresses the problem of building trust in online predictions of a battery powered aircraft's remaining available flying time. A set of ground tests is described that make use of a small unmanned aerial vehicle to verify the performance of remaining flying time predictions. The algorithm verification procedure described here uses a fully functional vehicle that is restrained to a platform for repeated run-to-functional-failure experiments. The vehicle under test is commanded to follow a predefined propeller RPM profile in order to create battery demand profiles similar to those expected in flight. The fully integrated aircraft is repeatedly operated until the charge stored in powertrain batteries falls below a specified lower-limit. The time at which the lower-limit on battery charge is crossed is then used to measure the accuracy of remaining flying time predictions. Accuracy requirements are considered in this paper for an alarm that warns operators when remaining flying time is estimated to fall below a specified threshold.
    Keywords: Avionics and Aircraft Instrumentation
    Type: NF1676L-21107 , Annual Conference of the Prognostics and Health Management Society; Oct 18, 2015 - Oct 24, 2015; Coronado, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: A full-vehicle, subscale all-electric model airplane was tested for radiated emissions, using a reverberation chamber. The mission of the NASA model airplane is to test in-flight airframe damage diagnosis and battery prognosis algorithms, and provide experimental data for other aviation safety research. Subscale model airplanes are economical experimental tools, but assembling their systems from hobbyist and low-cost components may lead to unforseen electromagnetic compatibility problems. This report provides a guide for accommodating the on-board radio systems, so that all model airplane systems may be operated during radiated emission testing. Radiated emission data are provided for on-board systems being operated separately and together, so that potential interferors can be isolated and mitigated. The report concludes with recommendations for EMI/EMC best practices for subscale model airplanes and airships used for research.
    Keywords: Electronics and Electrical Engineering
    Type: NASA/TM-2011-217146 , L-20017 , NF1676L-12559
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...