ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 17 (1989), S. 291-299 
    ISSN: 1573-9686
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2019-10-22
    Description: Chronic pediatric inflammatory bowel disease (IBD) leads to lack of bone accrual, bone loss, and increased fractures. Presently there is no cure, and many IBD treatments incur negative side effects. We previously discovered treatment with exogenous irisin resolved inflammatory changes in the colon, gut lymphatics, and bone in a mild IBD rodent model. Here we assess irisin treatment in severe IBD induced via dextran sodium sulfate (DSS). Male Sprague Dawley rats (2-mo-old) were untreated (Con) or given 2% DSS in drinking water. In week two, half of each group (Con + Ir and DSS + Ir) received injections of recombinant irisin (i.p., 2x/wk). After 4 weeks, gut inflammation was associated with declines in bone mineral density and cancellous bone volume. Furthermore, elevated osteocyte TNF-α, interleukin-6, RANKL, OPG, and sclerostin corresponded with higher osteoclast surfaces and lower bone formation rate in DSS animals as well as lower ultimate load. While irisin treatment improved colon inflammation, there were no improvements in bone density or bone mechanical properties; however, irisin elevated bone formation rate, decreased osteoclast surfaces, and reduced osteocyte pro-inflammatory factors. These data highlight the negative impact of chronic gut inflammation on bone as well as the therapeutic potential of irisin as an anti-inflammatory treatment.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The purpose of this study was to quantify precisely aging-induced changes in skeletal perfusion and bone mechanical properties in a small rodent model. Blood flow was measured in conscious juvenile (2 months old), adult (6 months old), and aged (24 months old) male Fischer-344 rats using radiolabeled microspheres. There were no significant differences in bone perfusion rate or vascular resistance between juvenile and adult rats. However, blood flow was lower in aged versus adult rats in the forelimb bones, scapulas, and femurs. To test for functional effects of this decline in blood flow, bone mineral density and mechanical properties were measured in rats from these two age groups. Bone mineral density and cross-sectional moment of inertia in femoral and tibial shafts and the femoral neck were significantly larger in the aged versus adult rats, resulting in increased (+14%-53%) breaking strength and stiffness. However, intrinsic material properties at midshaft of the long bones were 12% to 25% lower in the aged rats. Although these data are consistent with a potential link between decreased perfusion and focal alterations in bone remodeling activity related to clinically relevant bone loss, additional studies are required to establish the mechanisms for this putative relationship.
    Keywords: Aerospace Medicine
    Type: Clinical orthopaedics and related research (ISSN 0009-921X); 396; 248-57
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again and also scanned using dual-energy X-ray absorptiometry (DEXA). Cube specimens are then cut from the slabs and tested mechanically in compression. Correlations between mechanical properties and fractal dimension will then be examined to assess and quantify the predictive capability of the fractal calculations.
    Keywords: Aerospace Medicine
    Type: National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995; Volume 1; NASA-CR-201377-Vol-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: SPAR is a large-scale computer program for finite element structural analysis. The program allows user specification of the order in which the joints of a structure are to be eliminated since this order can have significant influence over solution performance, in terms of both storage requirements and computer time. An efficient elimination sequence can improve performance by over 50% for some problems. Obtaining such sequences, however, requires the expertise of an experienced user and can take hours of tedious effort to affect. Thus, an automatic elimination sequence optimizer would enhance productivity by reducing the analysts' problem definition time and by lowering computer costs. Two possible methods for automating the elimination sequence specifications were examined. Several algorithms based on the graph theory representations of sparse matrices were studied with mixed results. Significant improvement in the program performance was achieved, but sequencing by an experienced user still yields substantially better results. The initial results provide encouraging evidence that the potential benefits of such an automatic sequencer would be well worth the effort.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA. Marshall Space Flight Center Research Reports: 1986 NASA(ASEE Summer Faculty Fellowship Program; 23 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This project was aimed at making predictions of bone mechanical properties from non-invasive DXA and MRI measurements. Given the bone mechanical properties, stress calculations can be made to compare normal bone stresses to the stresses developed in exercise countermeasures against bone loss during space flight. These calculations in turn will be used to assess whether mechanical factors can explain bone loss in space. In this study we assessed the use of T2(sup *) MRI imaging, DXA, and fractal dimensional analysis to predict strength and stiffness in cancellous bone.
    Keywords: Aerospace Medicine
    Type: NASA/CR-97-113064 , NAS 1.26:113064
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: An important component in developing countermeasures for maintaining musculoskeletal integrity during long-term space flight is an effective and meaningful method of monitoring skeletal condition. Magnetic resonance imaging (MRI) is an attractive non-invasive approach because it avoids the exposure to radiation associated with X-ray based imaging and also provides measures related to bone microstructure rather than just density. The purpose of the research for the 1996 Summer Faculty Fellowship period was to extend the usefulness of the MRI data to estimate the mechanical properties of trabecular bone. The main mechanical properties of interest are the elastic modulus and ultimate strength. Correlations are being investigated between these and fractal analysis parameters, MRI relaxation times, apparent densities, and bone mineral densities. Bone specimens from both human and equine donors have been studied initially to ensure high-quality MR images. Specimens were prepared and scanned from human proximal tibia bones as well as the equine distal radius. The quality of the images from the human bone appeared compromised due to freezing artifact, so only equine bone was included in subsequent procedures since these specimens could be acquired and imaged fresh before being frozen. MRI scans were made spanning a 3.6 cm length on each of 5 equine distal radius specimens. The images were then sent to Dr. Raj Acharya of the State University of New York at Buffalo for fractal analysis. Each piece was cut into 3 slabs approximately 1.2 cm thick and high-resolution contact radiographs were made to provide images for comparing fractal analysis with MR images. Dual energy X-ray absorptiometry (DEXA) scans were also made of each slab for subsequent bone mineral density determination. Slabs were cut into cubes for mechanical using a slow-speed diamond blade wafering saw (Buehler Isomet). The dimensions and wet weights of each cube specimen were measured and recorded. Wet weights were also recorded. Each specimen was labeled and marked to denote anatomic orientations, i.e. superior/inferior (S/I), media/lateral (M/L), and anterior/posterior (A/P). The actual locations of each cube cut were documented and images distributed to define ROI locations for other analyses (to Raj Acharya for fractal analysis, to Jon Richardson at Baylor College of Medicine for DEXA, and to Chen Lin at Baylor College of Medicine for T2* MRI analysis). Quasistatic mechanical testing consisted of compressive loading in all three mutually perpendicular anatomic directions. Cyclic loading was applied for 10 cycles to precondition the specimen and results calculated for the eleventh. For one of three directions tested on each specimen, the 10 cycles were followed with loading to failure. Testing is currently proceeding and once completed the results will be correlated with data from the other analyses. One of the main points of interest is the relationship between fractal dimension and mechanical properties. Throughout preparation and testing all specimens were maintained hydrated with physiological saline and stored frozen when not being used.
    Keywords: Communications and Radar
    Type: National Aeronautics and Space Administration (NASA) /American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 1; 14.1-14.12; NASA-CR-202008
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...