ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
  • 2
    Publication Date: 2018-11-29
    Description: Natural killer (NK) cells play an essential role in early innate killing of virally-infected and tumor targets. NK cell-mediated activity is regulated by a repertoire of activating and inhibitory receptors that recognize ligands on diseased, stressed, or tumor targets. Killer cell immunoglobulin-like receptors (KIRs) are a family of polymorphic receptors that can be inhibitory or activating based on their intracellular signaling motifs. Expression of certain KIR haplotypes plays a key role in survival and relapse prevention for patients with acute myelogenous leukemia (AML) who receive allogeneic hematopoietic cell transplantation. Therefore, KIR haplotypes are an important consideration in selecting allogeneic donors for patients with AML. However, it is unclear if KIRs play a role in adoptive transfer of NK cells that are becoming more routinely utilized to treat refractory AML and other malignancies. To better address this question we used umbilical cord blood to isolate both CD34+ hematopoietic stem cells and CD45+CD56+ NK cells (UCB-56-NK) from the same umbilical cord blood unit. The CD34+ hematopoietic stem cells were then differentiated in vitro into CD56+ NK cells (UCB-34-NK). Despite originating from the same donor and sharing the same genetic background, as well as comparable expression of Fas ligand, TRAIL, NKp46, NKp44, NKG2A, and NKG2D, the UCB-34-NK cells have characteristically low KIR expression, whereas the UCB-56-NK cells have high KIR expression. This phenotype was further confirmed by mass cytometric (CyTOF) analysis of UCB-56-NK cells and UCB-34-NKcells with a panel of 36 phenotypic and functional NK cell markers. This unique system allows us to study the role of KIR expression independent of any other variations in donor or cell characteristics. The cytotoxicity and NK cell activation of UCB-34-NK cells and UCB-56-NK cells are compared to control NK cells isolated from peripheral blood (PB-NK cells) with standard in vitro cytotoxicity assays against neuroblastoma lines with varying HLA genotypes and a control K562 leukemic targets. Our data demonstrates that there is no statistical difference in NK cytotoxicity and activation of UCB-34-NK cells and UCB-56-NK cells across a spectrum of target cell HLA types, despite the differences in KIR expression. For example, at effector to target (E:T) ratios of 1:5 and 1:20 against neuroblastoma line IMR32, UCB-34-NK cells (KIR-low) demonstrated 68.5% and 84.1% maximal Caspase 3/7 activation, compared to 81.3% and 89.6% by UCB-56-NK cells (KIR-high). Additionally, we have used human induced pluripotent stem cells to derive NK cells (iPSC-NK cells) that vary in KIR expression levels. These CD45+CD56+ iPSC-NKs are differentiated from the same well-established iPSC line in the laboratory and therefore again share the same genetic background, and they have similar NK cell surface receptor expression of Fas ligand, TRAIL, NKp46, NKp44, and NKG2D, but differ in levels of KIR expression. Again in vitro cytotoxicity against hematopoietic tumor targets such as K562 and MOLM13 do not demonstrate a significant difference in killing, despite these KIR differences. For example, in targeting erythroleukemia K562 cells, iPSC-NK cells with high levels of KIR expression at E:T ratios of 1:2.5, 1:5, and 1: 10 have Caspase 3/7 activation of 21.1%, 28.2%, and 41.0%, compared to 20.1%, 22.0%, and 31.2% by iPSC-NK cells with low KIR expression. Together, these studies demonstrate that in vitro-derived NK cells do not require KIR expression to become licensed for anti-tumor activity and these cells are able to kill tumor targets whether or not they express KIRs. These studies better enable use of these allogeneic NK cell populations for off-the-shelf NK cell-based therapies without the need to optimize for KIR profiles for patients of differing HLA haplotypes. Disclosures Malmberg: Fate Therapeutics Inc.: Consultancy, Research Funding. Kaufman:Fate Therapeutics: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-13
    Description: Global gene expression profiling of the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL) has revealed broad innate immune signatures that distinguish the heterogeneous disease subtypes and correlate with good treatment outcome. However, we still lack tools to identify the relatively large group of patients that are refractory to initial therapy and have a dismal prognosis. Here, we used mass cytometry and serum profiling in a systems-level approach to analyze immune responses in 36 patients with aggressive B cell lymphoma and age- and sex-matched healthy controls. Stochastic neighbor embedding (t-SNE) analysis of protein profiles divided patients into two distinct clusters, with cluster 2 representing patients with a more severe deviation in their protein expression compared to healthy controls. Patients in cluster 2 showed a more dramatic perturbation of their immune cell repertoires with expansion of myeloid-derived suppressor cells (MDSCs), increased T cell differentiation and significantly higher expression of metabolic markers such as GLUT-1 and activation markers, including Ki67, CD38 and PD-1. An extended analysis of serum protein profiles in two independent cohorts (n=69 and n=80 patients, respectively) revealed that that the identified systemic immune signatures were linked to poor progression free survival (PFS) and inferior overall survival (OS). Immune monitoring during chemo-immunotherapy showed that most patients normalized their serum protein profiles. Notably, non-responding patients retained higher than normal expression of several proteins, including PD-L1, CD70, IL-18, granzyme A and CD83. These studies demonstrate distinct patterns of disease-driven alterations in the systemic immune response of DLBCL patients that are associated with poor survival and persist in patients who are refractory to therapy. Figure 1 System-level immune signatures associated with poor prognosis in DLBCL. A) Altered serum profiles in patients compared to healthy controls. Two clusters of patients were identified based on t-SNE analysis of serum profiles. B) Patients in cluster 2 had bulky disease and B symptoms. C) t-SNE map of all patients (n=36) and controls (n=17). Relative abundance of cells from healthy controls and patients in all areas of the t-SNE clustering, highlighting cell subsets that are larger or smaller in patients compared to healthy donors. Colors indicate the difference in kernel density estimation of the t-SNE data for patients and healthy controls. D) Abundance of monocytic myeloid-derived suppressor cells as percentage of all CD45+ cells in healthy donors and the two patient clusters. White, Healthy controls; Blue, Cluster 1; Red, Cluster 2. E) Major phenotypic differences between patient clusters shown as mean mass intensity (MMI) or percent positive cells for selected markers (CD38 and PD-1) across multiple subsets. White, Healthy controls; Blue, Cluster 1; Red, Cluster 2. F-G) Overall survival in patients with serologically defined immune signatures belonging to cluster 1 or 2. H) Abundance of serum proteins in patients that stayed in remission (n=24) compared to those that did not (n=6). Figure 1 Disclosures Olweus: Gilead Kite: Research Funding; Intellia: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Wahlin:Roche and Gilead: Consultancy. Fehniger:Cyto-Sen Therapeutics: Consultancy; Horizon Pharma PLC: Other: Consultancy (Spouse). Holte:Novartis: Honoraria, Other: Advisory board. Kolstad:Nordic Nanovector: Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Research Funding. Malmberg:Fate Therapeutics, Inc.: Consultancy, Research Funding; Vycellix: Consultancy, Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-29
    Description: Cytokine-inducible SH2-containing protein (CIS) is a critical negative regulator of IL-15 signaling in natural killer (NK) cells and is encoded by CISH gene in human. Recent studies in a murine model demonstrate that CIS is a potent inhibitory checkpoint in NK cell-mediated tumor immunity. However, it is unclear if CIS similarly regulates human NK cell-mediated anti-tumor activity. Unlike CTLA-4 and PD1 that are expressed at the cell surface and can be blocked by antibody-mediated therapy, CIS is expressed intracellularly. Therefore, we deleted CISH gene in human induced pluripotent stem cells (iPSCS) using CRISPR/Cas9 technology and characterized the CISH-knockout iPSC lines. Our study demonstrates that CISH does not regulate maintenance of undifferentiated human pluripotent stem cells. We then derived NK cells from these gene-modified iPSCs using a two-stage in vitro hematopoietic-lymphoid differentiation protocol developed by our group. Initial hematopoietic differentiation of the iPSCs was unaffected by CISH deletion. However, deletion of CISH in iPSCs markedly delayed the second stage of in vitro NK cell differentiation. Specifically, whereas NK cell differentiation was typically fully complete with 〉90% NK cells after 4 weeks using WT iPSCs, the CISH-/- iPSC- cells only produced ~10% CD45+CD56+ NK cells at 4 weeks, though by 5 weeks these cultures were 〉80% NK cells. The CISH-/- iPSC-derived NK cells demonstrated typical NK surface maker expression, including CD94, CD16, NKG2D, NKp44, NKp46, FasL, and KIRs. Initial studies demonstrated that CISH-/- human iPSC-derived NK cells had significantly reduced ability to expand in vitro with evidence of NK cell exhaustion, including increased TIM-3 expression, decreased IFN-γ production and decreased cytotoxicity. RNA-seq analysis also confirmed that expression of exhaustion-related genes, including TIM3, CTLA4, and 2B4, were all significantly increased in CISH-/- NK cells. Interestingly, mass cytometric (CyTOF) analysis of CISH-/- NK cells with a panel of 36 phenotypic and functional NK cell markers identified an exhausted sub-population (increased expression of exhaustion marker TIM3 and inhibitory receptors such as ILT2 and Siglec7, as well as decreased proliferation marker Ki67). Importantly, this exhaustion could be rescued by co-culturing CISH-/- NK cells with Notch ligand-expressing OP9-DL4 stromal cells, leading to production of fully functionally mature NK cells. The CISH-/- NK cells stimulated by Notch maintained better expansion and improved cytotoxic function with low concentrations of either IL15 or IL2 compared to WT-iPSC-derived NK cells. CISH-/- NK cells demonstrate increased cytotoxic activity against leukemia cell lines K562 and MOLM-13 cells in vitro. Moreover, single-cell cytokine response analysis of CISH-/- NK cells after Notch stimulation showed 〉10 fold enrichment of polyfunctional cell subsets with effector cytokine production (Granzyme B, IFN-γ, MIP-1α, Perforin, TNF-α) compared with WT NK cells or NK cells from peripheral blood. In a MOLM-13 xenograft model, CISH-/- NK cells displayed significantly increased persistence in peripheral blood in comparison with WT NK cells (CISH-/- NK cells 6.81 ± 0.85 % vs WT NK cells 2.05 ± 0.25 N=5). More importantly, CISH-/- NK cells show significantly better control of tumor progression in the MOLM-13 xenograft model compared with WT NK cells. Together, these studies demonstrate CISH plays a key role to regulate NK cell activation-induced exhaustion and that Notch activation prevents this exhaustion to enable production of functionally hyperactive NK cells. Disclosures Guan: Vivace: Equity Ownership. Malmberg:Fate Therapeutics Inc.: Consultancy, Research Funding. Kaufman:Fate Therapeutics: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-29
    Description: Natural killer (NK) cells hold great promise as a source for allogeneic cell therapy against hematological malignancies, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). NK cell recognition of allogeneic tumors is strictly regulated by inhibitory killer cell immunoglobulin-like receptors (KIR) that bind to groups of HLA class I alleles. However, KIR expression on NK cells is highly diverse due to variation in gene content, polymorphism and copy number in combination with stochastic expression of the protein in individual cells. As a consequence, the number of efficacious allogeneic NK cells within a product isolated and expanded from random donors can vary a great deal and potentially be negligible. Our group has defined a repertoire of NK cells that is uniquely found in individuals with prior exposure to cytomegalovirus (CMV). Interestingly, these cells were shown to share many attributes usually reserved for adaptive immune cells including increased longevity, memory, and serial killing. We have previously described a 14-day protocol to enrich for adaptive NKG2C+CD57+ NK cells from CMV sero-positive donors with a homogenous expression of one single self-HLA specific KIR (self KIR). Here, we present new data on the GMP-transfer and clinical scale-up of this protocol, providing a route to off-the-shelf adaptive NK cell therapy for refractory high-risk AML/MDS. By screening 〉250 healthy donors, we first established the prerequisites for robust expansion of adaptive NK cells from peripheral blood of CMV+ donors and found that donors with 〉15% pre-existing adaptive NK cells showed efficient expansion of adaptive NK cells (Figure 1A-B). Apheresis products from a pool of pre-screened third-party donors are currently being collected for GMP freezing and use in an off-the-shelf setting intended for HLA mismatched patients to maximize alloreactivity by "missing" self. The GMP compatible protocol led to a robust expansion of clinical doses of self-KIR+ adaptive NK cells, with an average frequency of 60% self-specific KIR+ cells in the end product (Figure 1C-D). Based on the expression of self-KIR the expanded cells were educated, showing large dense-core granules and high levels of granzyme B. Further characterization in CyTOF using 36 phenotypic and functional markers revealed a highly activated state with high expression of DNAM-1 and CD2, which are critical for NK cell adhesion and function (Figure 1E). Notably, the expanded adaptive NK cells were negative for the HLA-E binding inhibitory receptor NKG2A, which is a major check point for T- and NK-cell based therapies. A microchip single-cell imaging platform revealed high serial killing capacity of the expanded adaptive NK cells. In flow cytometry-based killing assays and long-term killing assays this enhanced capacity for serial killing correlated with highly efficient targeting of mismatched PHA blasts (Figure 1F), tumor cell lines (Figure 1G), and MDS blasts. These pre-clinical data demonstrate the feasibility of off-the-shelf therapy with a non-engineered and yet highly specific NK cell population, representing the first route to clinical testing of missing self-recognition as it was originally defined over thirty years ago. Disclosures Valamehr: Fate Therapeutics Inc.: Employment. Alici:Vycellix: Consultancy, Equity Ownership, Patents & Royalties, Research Funding; Intellia: Membership on an entity's Board of Directors or advisory committees. Ljunggren:Fate Therapeutics: Patents & Royalties; Vycellix: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Malmberg:Fate Therapeutics Inc.: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-05
    Description: Natural Killer (NK) cells play an essential role in cancer surveillance and have a unique capability of spontaneous cytotoxicity against cancer cells. The human NK cell repertoire is functionally diversified through a tightly regulated differentiation process characterized by an early transition from CD56bright to CD56dim NK cells, followed by coordinated changes in expression of inhibitory receptors, including NKG2A and killer cell immunoglobulin-like receptors (KIR). The acquisition of self HLA class I binding KIRs during NK cell differentiation tunes the cytotoxic potential of NK cells in a process termed education, characterized by increased loading of granzyme B in dense core granules. Although NK cell differentiation and education are critical determinants of the functional potential of the cell, little is known about how these events shape the migratory behavior of NK cells. To mediate appropriate and directed immune response against cancer, NK cells must be capable of migration to the tumor site. This process is mediated by chemokines, which guide cell migration by binding to their specific receptors. For example, in multiple myeloma, CXCR3 and CCR5 ligands (MIG, IP-10, and MIP-1a) are significantly upregulated in the bone marrow compared to healthy controls, affecting the composition of immune cells in the tumor microenvironment. In order to delineate the homing patterns of distinct NK cell subsets, we used high-dimensional flow cytometry combined with functional assays to map the NK cell chemokine receptor expression and migratory behavior. We screened resting and cytokine/feeder cell stimulated peripheral blood NK cells for the expression of a panel of 20 chemokine receptors (A). Based on CD56, CD57, NKG2A, and KIR expression, NK cells were divided into 6 phenotypically and functionally distinct subsets that were ordered according to their differentiation status (B). We found that the expression of CX3CR1, CXCR1, CXCR2, and CMKLR1 gradually increased during differentiation, whereas the expression of CXCR3, CCR7, and CCR5 was lower in more differentiated NK cells. CXCR4, CCR4, and CCR2 expression was relatively uniform across all subsets. Interestingly, CCR1 and CXCR6 were expressed mainly on less differentiated NKG2A+ CD56dim NK cells (B). Next, we stratified the chemokine receptor expression on mature KIR+ NK cells based on the expression of self (educated) or non-self KIR (uneducated). Educated NK cells expressed CXCR1, CX3CR1, CCR5, and CMKLR1 at higher levels than the uneducated NK cells. Conversely, CXCR3 was expressed at lower levels on educated NK cells (C). No difference was observed for CXCR2 expression. To determine whether the observed differences in chemokine receptor expression translate into altered chemokine responsiveness between the subsets, we combined the transwell system with multicolor flow cytometry. We found that the chemokine-induced migration capability of NK cells correlated closely with the expression level of corresponding chemokine receptor, leading to subset specific responses to various chemokine gradients (D). The present results show that peripheral blood NK cell chemokine receptor profile changes in a coordinated fashion during NK cell differentiation and is further influenced by the expression of self-specific KIR. Interestingly, receptors which expression declines during NK cell differentiation (CCR5, CCR7, and CXCR3) are commonly associated with adaptive T cell responses to viruses, whereas receptors that are upregulated along the differentiation axis (CXCR1, CXCR2, CX3CR1, CMKLR1) are typical for neutrophils and macrophages as a part of the innate immune response. Thus, our results suggest that NK cell differentiation and education processes together shape the NK cell migratory capabilities to promote homing of the most functional NK cell subsets to the site of inflammation and serve as the first line of defense in the immune response to pathogens and tumors. Figure Disclosures Malmberg: Fate Therapeutics: Consultancy, Patents & Royalties; Vycellix: Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-05
    Description: Induced pluripotent stem cell (iPSC)-derived natural killer (iNK) cells offer a promising platform for off-the-shelf immunotherapy against cancer. A unique benefit of iPSC-derived immune effector cells is the possibility to perform multiple precision editing steps at the single cell level to achieve a homogenous effector cell population tailored to target a desired cancer type and equipped with selected functional properties. These functional edits are superimposed on the innate reactivity of NK cells to stress ligands and MHC downregulation (missing self). The ability of NK cells to sense missing self is based on a functional calibration to self MHC during a process termed NK cell education, the latter being critically dependent on signaling through inhibitory receptors, including CD94/NKG2A and killer cell immunoglobulin-like receptors (KIR). Whereas the process of NK cell differentiation into mature effector cells from iPSCs has been well characterized, the role of natural variation in inhibitory receptor expression and NK cell education remains poorly defined in iNK cells. We used mass cytometry to map the receptor repertoire in series of iNK cell lines and genetic edits thereof during differentiation and in vitro expansion (Figure 1A and B). Similar to peripheral blood NK cells, the receptor repertoire was diversified but genetically hardwired showing consistent patterns within each iNK cell line but with slight variation between genetically distinct lines. NKG2A was the dominantly expressed inhibitory receptor ranging from 13% to 87% with the highest expression in multi-edited iNK cell lines engineered to express a chimeric antigen receptor against CD19, a high affinity, non-cleavable FcγRIIIa receptor (CD16) and a recombinant IL15 signaling complex (CAR19-iNK cells). KIR expression was generally low in all tested iNK cell lines but increased gradually during culture and was further increased by genetic silencing of NKG2A receptors. Interestingly, silencing of NKG2A lead to increased levels of the activating receptor NKG2C. We monitored degranulation by iNK cell variants against K562 engineered to express varying levels of HLA-E as well as CD19+ Nalm-6 cells. Genetic silencing of ß2microglobulin (ß2m), associated with reduced levels of HLA-class I and HLA-E, led to dampened global functional responses in iNK cells, suggesting a positive impact of education during iNK cell differentiation and expansion (Figure 1C). Subset stratification revealed that NKG2A+ iNK cells showed superior functionality compared to NKG2A- iNK cells across all iNK cell lines tested, albeit less striking in CAR19-iNK cells that showed the highest overall natural cytotoxicity (Figure 1D). Knockdown of NKG2A led to a general reduction in functional capacity of NK92 cells (Figure 1E-F) and CAR19-iNK cells (Figure 1H), supporting a critical role for NKG2A-driven education in iNK cells. Given the superior functionality of NKG2A+ iNK cells, we next addressed whether this advantage was countered by expression of the check point ligand HLA-E during target cell interactions. Although we noted a slight inhibitory impact on natural cytotoxicity in NK cells isolated and expanded from peripheral blood (PB-NK) against K562 cells expressing physiological levels of HLA-E, this effect was completely overridden in iNK cells and did not interfere with NKG2A+ CAR-iNK cell recognition of HLA-E expressing CD19+ target cells (Figure 1G-H). Indeed, NKG2A+ CAR19-iNK showed superior degranulation against HLA-E expressing CD19+ Nalm-6 targets compared to CRISPR-edited NKG2A-/- CAR19-iNK cells (Figure 1I). Our results shed light on the regulatory gene circuits and cellular programs that determine functional potential in iPSC-derived NK cells products. Specifically, our results point to a crucial role for NKG2A-driven acquisition of a mature effector cell phenotype in combination with functional education through cognate ligands. Importantly, iNK cell education is operational during iNK cell differentiation and expansion without interfering with recognition of tumor targets expressing HLA-E. Figure 1 Disclosures Cichocki: Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding. Mahmood:Fate Therapeutics, Inc: Current Employment. Gaidarova:Fate Therapeutics, Inc: Current Employment. Bjordahl:Fate Therapeutics: Current Employment. Chu:Fate Therapeutics, Inc: Current Employment. Groff:Fate Therapeutics, Inc: Current Employment. Denholtz:Fate Therapeutics, Inc: Current Employment. Miller:Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Vycellix: Consultancy; Onkimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees; Nektar: Honoraria, Membership on an entity's Board of Directors or advisory committees; GT Biopharma: Consultancy, Patents & Royalties, Research Funding. Lee:Fate Therapeutics, Inc.: Current Employment. Kaufman:Fate Therapeutics: Consultancy. Goodridge:Fate Therapeutics, Inc: Current Employment. Valamehr:Fate Therapeutics, Inc: Current Employment, Current equity holder in publicly-traded company. Malmberg:Fate Therapeutics: Consultancy, Patents & Royalties; Vycellix: Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...