ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 155 (1999), S. 1-32 
    ISSN: 1420-9136
    Keywords: Key words: COAMPS, coupled model, mutual response, tropical squall line, atmosphere, ocean, heat fluxes.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) is used to investigate the mutual response of a tropical squall line and the ocean. Simulated squall line compares well with the observations, and consists of counterrotating vortices, and has a bow shape bulge toward the leading edge. In addition to these features, which are also shown in the previous numerical simulations, the unique results from the coupled simulation indicate that the air–sea interaction processes within the squall line are important. They affect both the atmosphere and the ocean locally. Simulated upper ocean displays significant response to the squall line with upwelling and baroclinicity. Depth of the ocean mixed layer in the coupled simulation becomes modified due to feedback processes. Ocean temperature acts as a destabilizing factor, and the salinity as a stabilizing factor. Surface turbulent fluxes from the coupled simulation are about 10% less than that of the uncoupled simulation. The SST in the coupled simulation decreases by about 0.21°C. Predicted squall line in the coupled simulation is weaker as compared to the uncoupled simulation. This is reflected in terms of differences in surface fluxes, cloud water, rain water and vertical velocities between the two simulations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 58 (1996), S. 103-122 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary Convection and subsequent precipitation induced by the sea breeze circulations are often observed in the Florida peninsula during summer. In this study, the mechanisms of initiation and maintenance of the convective clouds and precipitation are investigated. A fully-compressible fine resolution non-hydrostatic mesoscale numerical model is used in this study. Surface energy and moisture budget were included in this model to simulate the diurnal cycle of ground surface temperature and wetness. The model also has a sophisticated boundary layer and explicit cloud physics. A sounding obtained from Orlando, Florida at 1110 UTC 17 July 1991 as part of the Convection and Precipitation Electrification (CaPE) experiment is used for initialization. The initial data for the model is kept in geostrophic and thermal wind balance. Several sensitivity tests were conducted to investigate the effects of different treatments of ground surface moisture and temperature on the model forecast of the convection and precipitation induced by the sea breeze circulations. The simulations agree reasonably well with the observations when both surface energy and moisture budget were included in the model to predict ground surface temperature and wetness. The surface moisture has a significant impact on the formation, strength, sustenance, and the location of convection and precipitation induced by the sea breezes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-01-01
    Print ISSN: 0177-7971
    Electronic ISSN: 1436-5065
    Topics: Geography , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-11-01
    Description: Monthly averages of numerical model fields are beneficial for depicting patterns in surface forcing such as sensible and latent heat fluxes, wind stress, and wind stress curl over data-sparse ocean regions. Grid resolutions less than 10 km provide the necessary mesoscale detail to characterize the impact of a complex coastline and coastal topography. In the present study a high-resolution mesoscale model is employed to reveal patterns in low-level winds, temperature, relative humidity, sea surface temperature as well as surface fluxes, over the eastern Pacific and along the U.S. west coast. Hourly output from successive 12-h forecasts are averaged to obtain monthly mean patterns from each season of 1999. The averages yield information on interactions between the ocean and the overlying atmosphere and on the influence of coastal terrain forcing in addition to their month-to-month variability. The spring to summer transition is characterized by a dramatic shift in near-surface winds, temperature, and relative humidity as offshore regions of large upward surface fluxes diminish and an alongshore coastal flux gradient forms. Embedded within this gradient, and the imprint of strong summertime topographic forcing, are small-scale fluctuations that vary in concert with local changes in sea surface temperature. Potential feedbacks between the low-level wind, sea surface temperature, and the wind stress curl are explored in the coastal regime and offshore waters. In all seasons, offshore extensions of colder coastal waters impose a marked influence on low-level conditions by locally enhancing stability and reducing the wind speed, while buoy measurements along the coast indicate that sea surface temperatures and wind speeds tend to be negatively correlated.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-06-01
    Print ISSN: 0033-4553
    Electronic ISSN: 1420-9136
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...