ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of soil science 47 (1996), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The mobilization of phosphate by two pasture species was studied in an alumina sand with P added as phosphate rock (PR–P) and as phosphate sorbed on to alumina (A12O3–P). The experiments were performed with a cropping device which enables the collection of rhizosphere material at defined distances from the roots of ryegrass (Lolium rigidum L.) and clover (Trifolium subterraneum L.). Nitrogen was supplied as nitrate alone or in combination with ammonium, which stimulates proton excretion by plant roots. Whatever the phosphate source, rhizosphere pH decreased relative to control pots without plants when ammonium was supplied. The pH decrease was larger for ryegrass than clover and reached 1.5 pH units when phosphate was supplied as A12O3–P. When nitrogen was supplied as nitrate only, rhizosphere pH remained close to the near neutral pH of the control. Root–induced dissolution of PR ranged between 20% of applied PR–P for nitrate–fed ryegrass and 40% for ammonium–fed ryegrass. Most of the P dissolved from PR was sorbed on to alumina and accumulated as alkali soluble P in the rhizosphere of both species, whilst dissolved Ca from PR also accumulated. The excretion of protons by roots of clover and ryegrass was thus the driving force for the root–induced dissolution of PR. When P was supplied as A12O3–P, ryegrass grew more than clover and took up more phosphate whatever the nitrogen source. Depletion of alkali soluble P, that is phosphate sorbed on to alumina, occurred only for ryegrass and extended up to two millimetres from the roots. These differences between the two plant species suggest that the mobilization of A12O3–P was not simply related to rhizosphere pH. Instead, the superior ability of ryegrass to mobilize A12O3–P relative to clover might be related to the ability of its roots to cope with smaller solution P concentration (smaller external P requirement).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0867
    Keywords: granite ; rock powder ; fertilizer ; potassium ; exchangeable potassium ; soil pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil samples were collected from 20 locations from the south western part of Western Australia and incubated at 25 °C for 60 days without or with finely ground granite powder at a rate of 20 g kg−1 soil, equivalent to about 20 t ha−1. Electrical conductivity and exchangeable Na, Ca and Mg were not significantly affected by granite application for most soils. Conversely, among the 20 soils studied, nine exhibited a significant increase in exchangeable K (atp〈0.01) due to granite application. Six of them showed a consistent increase in soil pH as measured in a CaCl2 extract, corresponding to less than 0.26 pH units. The concomitant increase in exchangeable K due to granite application ranged between 10 and 390%. However, in absolute value it amounted to less than 0.07 cmol K kg−1 soil, suggesting that a maximum of 59 g kg−1 of the applied granite dissolved during the course of this incubation experiment. One of the most granite responsive soils was used for a pot experiment conducted with wheat grown for 88 days in a glasshouse. In this experiment, the soil was either untreated (control) or mixed with either granite or diorite powders at six different rates of application. The wheat biomass and cation contents in plant tissue were not significantly affected by the application of diorite at any rate of application. Conversely, for the granite-treated soil a significant increase in wheat biomass was encountered for rates larger than 2.5 g kg−1 soil. Since a significant increase in K content was obtained at the same rates of application it was concluded that the positive response of wheat growth to granite application was due to potassium supplied by granite dissolution. The use of granite powder as a potential K fertilizer thus needs further attention even though its efficiency as compared to a soluble fertilizer would almost certainly be poor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 45 (1995), S. 143-152 
    ISSN: 1573-0867
    Keywords: dissolution ; exchangeable potassium ; granite ; K fertilizer ; Lolium rigidum ; Trifolium subterraneum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of granite powder (〈70µm) as a K fertilizer was investigated in a glasshouse pot experiment conducted with three acid, sandy topsoils from podzols of South Western Australia and with three fertilizer treatments: a control without K application, a KCl treatment (90 mg K kg−1 soil) and a granite treatment (20 g granite kg−1 soil, yielding 640 mg K kg−1 soil). Subterranean clover (Trifolium subterraneum) and ryegrass (Lolium rigidum) were cropped in triplicated pots for 7 weeks, harvested and allowed to regrow for another 13 weeks. Clover growth at 7 weeks was in the following order: control 〈 granite 〈 KCl. The growth of ryegrass after 7 weeks was not significantly affected by granite as compared to the control treatment. After another 13 weeks, both species showed a significant growth response to granite application for two of the three soils studied. For both species and all three soils K concentrations in the plant tissue were systematically and significantly higher for KCl relative to granite and for granite relative to control treatment. Minor dissolution of granite occurred during the short duration of the experiment as indicated by changes in soil exchangeable K in uncropped pots (about 1-2% of K applied) and resulted in the increased K concentration in plants and the growth response of subterranean clover after 7 and 20 weeks and ryegrass after 20 weeks of cropping. The possible use of granite powder as a slow-release K fertilizer is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 211 (1999), S. 1-9 
    ISSN: 1573-5036
    Keywords: imaging ; microelectrodes ; mucilage ; pH ; rhizosphere ; videodensitometry ; X-ray computed tomography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The past decade has seen the rapid development of new techniques that have revealed substantial changes in soil physical and chemical properties in the rhizosphere compared to the bulk soil. This brief overview focuses on some examples of recently developed, innovative techniques now available and indicates the technical developments required for the future. The development of non-invasive imaging allied with computed tomography has begun to allow the study of root systems in situ and the measurement of localized uptake of water. Further development is still required to disaggregate the simultaneous changes in bulk density and water content that may occur as roots occupy new soil volumes, but resolution of 0.1 mm is now feasible in scanning times of less than 1 h thereby allowing dynamic processes to be measured. Changes in surface tension and composition of solutions close to roots, and of pH, can now be measured with a variety of techniques. Temporal and spatial changes of pH can be measured with micro-electrodes and dye indicator/agar gel techniques have allowed quantitative estimates of H+ fluxes albeit in artificial systems. Novel micro-sampling techniques are under development to quantify rhizosphere changes. So far these techniques have rarely been applied in soils but innovative sampling and analytical techniques should soon allow such studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: adsorption ; Festuca ovina L. ; radiocaesium ; rhizosphere ; root uptake ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Uptake by roots from contaminated soil is one of the key steps in the entry of radiocaesium into the food chain. We have measured the uptake by roots of radiocaesium and its transfer to shoots of a heathland grass, sheep fescue (Festuca ovina L.) from two contrasting agricultural soils, a sandy podzol and a clayey calcareous soil. A culture device which keeps the roots separate from the soil was used thus allowing rhizosphere soil to be obtained easily and enhancing the effect of root action. Biomass production and 137Cs in shoots and roots were recorded. Cs adsorption was studied on both the initial, nonrhizosphere soil and on rhizosphere soil in dilute soil suspension. Cs desorption was measured by resuspending subsamples of contaminated soil in solutions containing various concentrations of stable Cs. The proportion of Cs fixed, i.e. not readily desorbable, was calculated by comparison of the adsorption and desorption isotherms. Uptake by roots varied considerably between soils and did not appear to be diffusion limited. Root-to-shoot transfer did not differ for the two soils studied. Root action considerably enhanced Cs adsorption on the soils, particularly the in sandy podzol with a low Cs affinity. The value of Kd was increased by up to an order of magnitude. A large proportion of adsorbed Cs was found to be fixed, the Kd was up to seven times greater on desorption than adsorption, indicating that up to 80% of adsorbed Cs was not readily exchangeable. Root action had little effect on the fixed fraction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: calcite ; goethite ; maize ; phosphate ; H+ release ; Brassica napus L. ; Zea Mays L
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In calcareous soils the dynamics of phosphorus is controlled by calcite and iron oxides such as goethite which strongly retain P and consequently maintain low P concentrations in soil solution. Plants can drastically change chemical conditions in the rhizosphere, in particular by releasing H+ or OH− or by excreting organic anions. By modifying the dissolution/precipitation and desorption/adsorption equilibria, roots can influence the mobility of soil P. The aim of this work was to test whether H+ or OH− release can induce the mobilization of P in the rhizosphere of maize and rape supplied with NO3-N or NH4-N and grown on synthetic phosphated calcite or goethite as sole source of P. With P-calcite, the mobilization of P was generally related to the acidification of the rhizosphere. With P-goethite, rhizosphere acidification induced some increase of DTPA-extractable Fe and hence dissolution of goethite. Rhizosphere P was concomitantly depleted but the mechanisms involved are less clear. The difference in behavior of the two species is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 211 (1999), S. 103-110 
    ISSN: 1573-5036
    Keywords: bioavailability ; isotopic evaluation ; phosphate ion exchange ; phosphorus ; rhizosphere ; soil solution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The uptake of phosphorus (P) by roots results in a depletion of phosphate ions (PO4) in the rhizosphere. The corresponding decrease in PO4 concentration in the soil solution (CP) gives rise to a replenishment of P from the solid phase which is time- and CP-dependent. This PO4 exchange which reflects the buffer power of the soil for PO4 also varies with the composition and the physico-chemical conditions of the soil. As root activity can modify these physico-chemical conditions in the rhizosphere, the question arises whether these modifications affect the ability of PO4 bound to the soil solid phase to exchange with PO4 in soil solution. The aim of the present work was to measure and compare the parameters which describe the amount of PO4 bound to soil solid phase that is capable to replenish solution P for both rhizosphere and bulk soils. The soil sample was a P-enriched, calcareous topsoil collected from a long-term fertiliser trial. Rhizosphere soil samples were obtained by growing dense mats of roots at the surface of 3 mm thick soil layer for one week. Three plant species were compared: oilseed rape (Brassica napus L., cv Goeland) pea (Pisum sativum L., cv. Solara) and maize ( Zea mays L., cv. Volga). The time- and CP-dependence of the PO4 exchange from soil to solution were described using an isotopic dilution method. The measured CP values were 0.165 mg P L−1 for bulk soil and 0.111, 0.101 and 0.081 mg P L−1 for rhizosphere soils of maize, pea and rape, respectively. The kinetics of the PO4 exchange between liquid and solid phases of soil were significantly different between rhizosphere and bulk soils. However, when changes in CP were accounted for, the parameters describing the PO4 exchange with time and CP between soil solution and soil solid phase were found to be very close for bulk and rhizosphere soils. For this calcareous and P-enriched soil, plant species differed in their ability to deplete PO4 in solution. The resulting changes in the ability of the soil solid phase to replenish solution PO4 were almost fully explained by the depletion of soil solution P.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-08-01
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-01-01
    Print ISSN: 0249-5627
    Electronic ISSN: 1297-9643
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-01-01
    Print ISSN: 0249-5627
    Electronic ISSN: 1297-9643
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...