ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1971-11-01
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-01-01
    Print ISSN: 0920-9069
    Electronic ISSN: 1573-0778
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-01-01
    Print ISSN: 0920-9069
    Electronic ISSN: 1573-0778
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-0778
    Keywords: cell lines ; diploid fibroblasts ; microcarriers ; serum-free culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The present study describes a novel microcarrier substrate consisting of a swellable, copolymer of styrene and divinylbenzene, derivatized with trimethylamine. The co-polymer trimethylamine microcarriers support the growth of a number of different cell lines – Madin Darby Bovine Kidney, Madin-Darby Canine Kidney, Vero and Cos-7 – under serum-free conditions, and human diploid fibroblasts in serum-containing medium. Cells attach to the co- polymer trimethylamine microcarriers as rapidly as they attach to other charged-surface microcarriers (faster than they attach to collagen-coated polystyrene microcarriers) and spread rapidly after attachment. All of the cells examined grow to high density on the co- polymer trimethylamine microcarriers. Furthermore, cells are readily released from the surface after exposure to a solution of trypsin/EDTA. In this respect, the co-polymer trimethylamine microcarriers are different from other charged-surface microcarriers. Madin-Darby Bovine Kidney cells grown on this substrate support production of vaccine strain infectious bovine rhinotracheitis virus as readily as on other charged-surface or collagen-coated microcarriers. Thus, the co-polymer trimethylamine microcarriers combine the positive characteristics of the currently available charged-surface and adhesion-peptide coated microcarriers in a single product. The viral vaccine production industry is undergoing considerable change as manufacturers move toward complete, animal product-free culture systems. This novel substrate should find application in the industry, especially in processes which depend on viable cell recovery.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cytotechnology 22 (1996), S. 111-117 
    ISSN: 1573-0778
    Keywords: aggregation ; bioreactor ; cell growth ; diploid fibroblasts ; microcarriers ; suspension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Polystyrene microcarriers were prepared in four size ranges (53–63 μm, 90–125 μm, 150–180 μm and 300–355 μm) and examined for ability to support attachment and growth of human diploid fibroblasts. Cells attached rapidly to the microcarriers and there was a direct relationship between cell attachment and microcarrier aggregation. Phasecontrast and scanning electron microscopic studies revealed that while aggregation was extensive, most of the aggregate consisted of void volume. Cell growth studies demonstrated that human diploid fibroblasts proliferated well in microcarrier aggregates, reaching densities of 2.5–3×106 cells per 2 ml dish after 6 days from an inoculum of 0.5×106 cells per dish. When cells were added to the microcarriers at higher density (up to 5×106 cells per 2-ml culture), there was little net growth but the cells remained viable over a 7-day period. In contrast, cells died when plated under the same conditions in monolayer culture. When the microcarriers were used in suspension culture, rapid cell attachment and rapid microcarrier aggregation also occurred. In 100-ml suspension culture, a cell density of 0.7×106 cells per ml was reached after 7 days from an inoculum of 0.1×106 cells. Based on these data, we conclude that microcarrier aggregation is not detrimental to fibroblast growth. These data also indicate that small microcarriers (53–63 μm) (previously thought to be too small to support the growth of diploid fibroblasts) can support fibroblast growth and this occurs primarily because microcarriers in this size range efficiently form aggregates with the cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-0778
    Keywords: collagen ; gelatin ; MDCK ; microcarrier ; polylysine ; Pronectin-F
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Polystyrene culture dishes and polystyrene microcarriers were coated with Pronectin-F and poly-l-lysine (polylysine), either alone or in combination. Pronectin-F is a recombinant peptide containing repeats of the RGD cell-attachment sequence from fibronectin. Polylysine is a polymer ofl-lysine. Pronectin-F supported attachment of Madin-Darby Canine Kidney (MDCK) cells at concentrations as low as 0.025 μg/cm2 of surface area. The cells rapidly spread after attachment. Polylysine at concentrations of 0.05–0.5 μg/cm2 also supported cell attachment but cells did not rapidly spread after attachment to this substrate. Higher concentrations of polylysine could not be used because of toxicity. When the two peptides were used in conjunction, MDCK cells attached and spread at lower peptide concentrations than they did when either substrate was used alone. These findings suggest that recombinant Pronectin-F alone or in conjunction with a cationic polymer could be a useful replacement for materials such as gelatin or collagen which are currently used as microcarrier surfaces.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 993-997 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Human squamous epithelial cells produce lower amounts of laminin and fibronectin when cultured on DEAE-dextran than when cultured on gelatin-coated polystyrene (Biotechnol. Bioeng., 33:1235). The epithelial cells also spread much more slowly on DEAE-dextran than they do on gelatincoated polystyrene. To determine if the low level of matrix production by cells grown on DEAE-dextran contributed to the slowness of cell spreading on this substrate, microcarriers made from DEAE-dextran were treated with exogenous laminin (10 μg/cm2 of surface area) and then examined for ability to support cell adhesion. Squamous epithelial cells spread as rapidly on the laminin-treated DEAE-dextran as they did on gelatin-coated polystyrene (much more rapidly than on untreated DEAE-dextran). This indicates (1) that laminin can bind to DEAE-dextran in a fashion that is biologically usable by anchorage-dependent cells, and (2) that when laminin is bound to DEAE-dextran, the failure of squamous epithelial cells to rapidly spread is overcome. These data support the hypothesis that failure of the cells to synthesize an intact extracellular matrix on DEAE-dextran is responsible, at least in part, for the slowness with which cells spread on this substrate. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...