ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.
    Keywords: Man/System Technology and Life Support
    Type: MFS-32584-1 , NASA Tech Brief, May 2011; 20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded.
    Keywords: Optics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A miniature fiber-optic, laser-based, interferometric leak detector is presented for application as a means to detect on-orbit gas leaks. The sensor employs a fiber-coupled modified Michelson interferometer to detect gas leaks by measuring an increase in gas density in the sensing region. Monitoring changes in the fringe pattern output by the interferometer allows for direct measurement of the gas density in the sensing region and, under the assumption of an equation of state, this can be used to obtain a pressure measurement. Measurements obtained over a pressure range from 20 mtorr to 760 torr using a prototypical interferometer on working gases of air, nitrogen, argon, and helium generally exhibit agreement with a theoretical prediction of the pressure increase required before an interference fringe completely moves over the detector. Additional measurements performed on various gases demonstrate the range of detectable species, measuring sub-torr pressure changes in the process. A high-fidelity measurement places the ultimate pressure resolution for this particular sensor configuration in the 10 mtorr range. Time-resolved data prove the capability of this sensor to detect fast gas flow phenomena associated with transients and pressure waves.
    Keywords: Optics
    Type: M09-0608 , 45th AIAA/ASME/ASEE/SAE Joint Propulsion Conference and Exhibit/American Institute of Aeronautics and Astronautics; Aug 03, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Space mission planning often involves long-term storage of volatile liquids or high-pressure gases. These may include cryogenic fuels and oxidizers, high-pressure gases, and life-support-critical consumables. The risk associated with the storage of fluids and gases in space systems has long been an issue and the ability to retain these fluids is often tied to mission success. A leak in the storage or distribution system can cause many different problems, including a simple, but mission endangering, loss of inventory or, in severe cases, unbalanced thrust loads on a flight vehicle. Cryogenic propellants are especially difficult to store, especially over a long duration. The propellant can boil off and be lost through the insulating walls of the tank or simple thermal cycling of the fittings, valves, and propellant feed lines may unseat seals allowing the fluid to escape. Current NASA missions call for long-duration in-space storage of propellants, oxidizers, and life support supplies. Leaks of a scale detectable through a pressure drop in the storage tank are often catastrophic and have long been the focus of ground-based mitigation efforts where redundant systems are often employed. However, there is presently no technology available for detecting and monitoring low-level, but still mission-endangering, gas leaks in space. Standard in-space gas detection methods either have a very limited pressure range over which they operate effectively or are limited to certain gases. Mass spectrometer systems are able to perform the detection tasks, but their size, mass and use of high voltage, which could potentially lead to an arc that ignites a combustible propellent, severely limit their usefulness in a space system. In this paper, we present results from testing of the light-based interferometric gas monitoring and leak detection sensor shown in Fig. 1. The output of the sensor is an interference fringe pattern that is a function of the gas density, and commensurate index of refraction, in the sample region. Changes in the density of gas cause the interference fringes to move across a photodiode detector, providing a temporal history of the leak. The sensor is fiber coupled and constructed from solid optics, allowing for placement almost anywhere on the spacecraft. It is also advantageous in that it consumes very little power and does not introduce an ignition source. Data are presented demonstrating the capability of the sensor to measure density variations in different gas species. In addition, the transient response of the sensor in vacuum is demonstrated. These data extend and improve upon the results previously presented by the authors in Ref. [1].
    Keywords: Propellants and Fuels
    Type: M09-0240 , 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Aug 02, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...