ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 12 (1994), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: l-Fucose (6-deoxy-l-galactose) is used as sole carbon source by many microorganisms, and its transport into Escherichia coli is mediated by An l-fucose-H+ symport activity, in order to determine the nature of a putative transporter encoded by the E. coli fucP gene and Identify its protein product it was cloned downstream of the inducible T7 RNA polymerase and lambda Ol Pl promoters, induction of the T7 promoter resulted in the expression of [14C]-l-fucose uptake activity and the concomitant expression of a [35S]-Met-labelled 32 kDa protein at levels too tow for detection by staining with Coomassie briiiiant blue or for protein sequencing, induction of the lambda Ol Pl promoter caused the appearance of l-fucose-H+ symport activity and of a Coomassie brilliant blue-stained 32 kDa membrane protein expressed at high levels sufficient for identification as FucP by N-terminal protein sequencing. The FucP protein is, therefore, a sugar-H+ symporter different in amino acid sequence from any other known transporter. These and other results illustrate the general unpredictability of cloning strategies for attempting the amplified expression of membrane transport proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A new family of homologous membrane proteins that transport galactosides–pentoses–hexuronides (GPH) is described. By analysing the aligned amino acid sequences of the GPH family, and by exploiting their different specificities for cations and sugars, we have designed mutations that yield novel insights into the nature of ligand binding sites in membrane proteins. Mutants have been isolated/constructed in the melibiose transport proteins of Escherichia coliKlebsiella pneumoniae and Salmonella typhimurium, and the lactose transport protein of Streptococcus thermophilus which facilitate uncoupled transport or have an altered cation and/or substrate specificity. Most of the mutations map in the amino-terminal region, in or near amphipathic α-helices II and IV, or in interhelix-loop 10–11 of the transport proteins. On the basis of the kinetic properties of these mutants, and the primary and secondary structure analyses presented here, we speculate on the cation binding pocket of this family of transporters. The regulation of the transporters through interaction with, or phosphorylation by, components of the phosphoenolpyruvate:sugar phosphotransferase system is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 15 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The transport of l-fucose into Escherichia coli is mediated by the l-fucose-H+ symport protein (FucP). The fucP gene has been sequenced and encodes a hydrophobic protein that contains 438 amino acid residues, with a predicted Mr of 47773. The hydropathic profile of FucP indicates 10 to 12 hydrophobic regions that could span the membrane as α-helices. A 12-helix model with the N- and C-termini located in the cytoplasm was derived from the hydropathic profile and from application of the ‘positive inside’ rule. This model was tested using β-lactamase fusion technology. Analyses of 62 different FucP-β-lactamase fusions suggested that the FucP protein crosses the cytoplasmic membrane of E. coli 12 times, with the N- and C-termini in the cytoplasm. From measurements of [14C]-l-fucose uptake, it was deduced that the last putative transmembrane region must be complete for transport activity to be retained and that the four C-terminal residues were unnecessary for transport activity. Fourier transform analyses show that all the predicted helices contain a periodicity that enables hydrophobic/hydrophilic faces to be identified; these were particularly evident in putative helices 1, 3, 4, 5, 6, 10 and 11.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In the bacterium Escherichia coli there is one H+-linked transport system for arabinose encoded by the gene araE5, and another for xylose encoded by xylE6 (with gene products AraE and XylE). The linkage of sugar and H+ translocation enables energization of nutrient uptake by the transmembrane ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Bioscience reports 11 (1991), S. 477-538 
    ISSN: 1573-4935
    Keywords: General Chemiosmotic Theory ; Chemiosmotic Hypothesis ; membrane transport ; membrane proteins ; sugar transport ; homologous proteins ; symport ; antiport ; uniport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract There is a symbiotic relationship between the evolution of fundamental theory and the winning of experimentally-based knowledge. The impact of the General Chemiosmotic Theory on our understanding of the nature of membrane transport processes is described and discussed. The history of experimental studies on transport catalysed by ionophore antibiotics and the membrane proteins of mitochondria and bacteria are used to illustrate the evolution of knowledge and theory. Recent experimental approaches to understanding the lactose-H+ symport protein ofEscherichia coli and other sugar porters are described to show that the lack of experimental knowledge of the three-dimensional structures of the proteins currently limits the development of theories about their molecular mechanism of translocation catalysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 22 (1990), S. 525-569 
    ISSN: 1573-6881
    Keywords: Sugar transport ; membrane protein structure ; homologous proteins ; chemiosmotic therapy ; sugar/proton symport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The cell membranes of various bacteria contain proton-linked transport systems ford-xylose,l-arabinose,d-galactose,d-glucose,l-rhamnose,l-fucose, lactose, and melibiose. The melibiose transporter ofE. coli is linked to both Na+ and H+ translocation. The substrate and inhibitor specificities of the monosaccharide transporters are described. By locating, cloning, and sequencing the genes encoding the sugar/H+ transporters inE. coli, the primary sequences of the transport proteins have been deduced. Those for xylose/H+, arabinose/H+, and galactose/H+ transport are homologous to each other. Furthermore, they are just as similar to the primary sequences of the following: glucose transport proteins found in a Cyanobacterium, yeast, alga, rat, mouse, and man; proteins for transport of galactose, lactose, or maltose in species of yeast; and to a developmentally regulated protein of Leishmania for which a function is not yet established. Some of these proteins catalyze facilitated diffusion of the sugar without cation transport. From the alignments of the homologous amino acid sequences, predictions of common structural features can be made: there are likely to be twelve membrane-spanning α-helices, possibly in two groups of six, there is a central hydrophilic region, probably comprised largely of α-helix; the highly conserved amino acid residues (40–50 out of 472–522 total) form discrete patterns or motifs throughout the proteins that are presumably critical for substrate recognition and the molecular mechanism of transport. Some of these features are found also in other transport proteins for citrate, tetracycline, lactose, or melibiose, the primary sequences of which are not similar to each other or to the homologous series of transporters. The glucose/Na+ transporter of rabbit and man is different in primary sequence to all the other sugar transporters characterized, but it is homologous to the proline/Na+ transporter ofE. coli, and there is evidence for its structural similarity to glucose/H+ transporters in Plants.In vivo andin vitro mutagenesis of the lactose/H+ and melibiose/Na+ (H+) transporters ofE. coli has identified individual amino acid residues alterations of which affect sugar and/or cation recognition and parameters of transport. Most of the bacterial transport proteins have been identified and the lactose/H+ transporter has been purified. The directions of future investigations are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1572-9699
    Keywords: antibiotics ; sugar transport ; transport ; transport protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract GalP is the membrane protein responsible for H+-driven uptake of D-galactose intoEscherichia coli. It is suggested to be the bacterial equivalent of the mammalian glucose transporter, GLUT1, since these proteins share sequence homology, recognise and transport similar substrates and are both inhibited by cytochalasin B and forskolin. The successful over-production of GalP to 35–55% of the total inner membrane protein ofE. coli has allowed direct physical measurements on isolated membrane preparations. The binding of the antibiotics cytochalasin B and forskolin could be monitored from changes in the inherent fluorescence of GalP, enabling derivation of a kinetic mechanism describing the interaction between the ligands and GalP. The binding of sugars to GalP produces little or no change in the inherent fluorescence of the transporter. However, the binding of transported sugars to GalP produces a large increase in the fluorescence of 8-anilino-1-naphthalene sulphonate (ANS) excited via tryptophan residues. This has allowed a binding step, in addition to two putative translocation steps, to be measured. From all these studies a basic kinetic mechanism for the transport cycle under non-energised conditions has been derived. The ease of genetical manipulation of thegalP gene inE. coli has been exploited to mutate individual amino acid residues that are predicted to play a critical role in transport activity and/or the recognition of substrates and antibiotics. Investigation of these mutant proteins using the fluorescence measurements should elucidate the role of individual residues in the transport cycle as well as refine the current model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: Acinetobacter baumannii has rapidly emerged as a major cause of gram-negative hospital infections worldwide. A. baumannii encodes for the transport protein AceI, which confers resistance to chlorhexidine, a widely used antiseptic. AceI is also the prototype for the recently discovered proteobacterial antimicrobial compound efflux (PACE) family of transport proteins that confer resistance to a range of antibiotics and antiseptics in many gram-negative bacteria, including pathogens. The gene encoding AceI is conserved in the core genome of A. baumannii, suggesting that it has an important primordial function. This is incongruous with the sole characterized substrate of AceI, chlorhexidine, an entirely synthetic biocide produced only during the last century. Here we investigated a potential primordial function of AceI and other members of the PACE family in the transport of naturally occurring polyamines. Polyamines are abundant in living cells, where they have physiologically important functions and play multifaceted roles in bacterial infection. Gene expression studies revealed that the aceI gene is induced in A. baumannii by the short-chain diamines cadaverine and putrescine. Membrane transport experiments conducted in whole cells of A. baumannii and Escherichia coli and also in proteoliposomes showed that AceI mediates the efflux of these short-chain diamines when energized by an electrochemical gradient. Assays conducted using 8 additional diverse PACE family proteins identified 3 that also catalyze cadaverine transport. Taken together, these results demonstrate that short-chain diamines are common substrates for the PACE family of transport proteins, adding to their broad significance as a novel family of efflux pumps.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-02-01
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...