ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1971-08-01
    Print ISSN: 0556-2805
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1969-11-10
    Print ISSN: 0031-899X
    Electronic ISSN: 1536-6065
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Compact Raman spectrometers developed to measure concentrations of hydrogen as low as hundreds of parts per million in air, nitrogen, or other carrier gases. Advantages include speed, dynamic range, and ease of calibration. Design concept incorporates Raman-scattering apparatus into compact instrument of hydrogen leaking into stream of gas or into gas enclosed in small space. Should hydrogen-fueled cars and trucks come into widespread use, instruments used to detect leaks from vehicles and supply equipment, to help prevent explosions. Similar spectrometers developed to detect other gases emitting characteristic Raman spectra.
    Keywords: PHYSICAL SCIENCES
    Type: KSC-11441 , NASA Tech Briefs (ISSN 0145-319X); 17; 1; P. 22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.
    Keywords: Engineering (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: The use of a quadrupole ion trap mass spectrometer for quantitative analysis of hydrogen and helium as well as other permanent gases is demonstrated. The customized instrument utilizes the mass selective instability mode of mass analysis as with commercial instruments; however, this instrument operates at a greater RF trapping frequency and without a buffer gas. With these differences, a useable mass range from 2 to over 50 Da is achieved, as required by NASA for monitoring the Space Shuttle during a launch countdown. The performance of the ion trap is evaluated using part-per-million concentrations of hydrogen, helium, oxygen and argon mixed into a nitrogen gas stream. Relative accuracy and precision when quantitating the four analytes were better than the NASA-required minimum of 10% error and 5% deviation, respectively. Limits of detection were below the NASA requirement of 25-ppm hydrogen and 100-ppm helium; those for oxygen and argon were slightly higher than the requirement. The instrument provided adequate performance at fast data recording rates, demonstrating the utility of an ion trap mass spectrometer as a real-time quantitative monitoring device for permanent gas analysis.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user interface is very intuitive and easy to operate. The system has successfully supported four launches to date. It is currently being permanently installed as the primary system monitoring the Space Shuttles during ground processing and launch operations. Time and cost savings will be substantial over the current systems when it is fully implemented in the field. Tests were performed to demonstrate the performance of the system. Low limits-of-detection coupled with small drift make the system a major enhancement over the current systems. Though this system is currently optimized for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.
    Keywords: Space Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Various mass analyzer systems were evaluated. Several systems show promise, including the Stanford Research Systems RGA-100, Inficon XPR-2, the University of Florida's Ion Trap, and the Compact Double Focus Mass Spectrometer. Areas that need improvement are the response time, recovery time, system volume, and system weight. Future work will investigate techniques to improve systems and will evaluate engineering challenges.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: 3rd Annual Harsh Environment Mass Spectrometry Workshop; Mar 26, 2002 - Mar 27, 2002; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: To enter orbit the Space Shuttle burns 1.8 million liters of liquid hydrogen combined with 0.8 million liters of liquid oxygen through three rocket engines mounted in the aft. NASA monitors the nitrogen-purged aft compartment for increased levels of hydrogen or oxygen in order to detect and determine the severity of a cryogenic fuel leak. Current monitoring is accomplished with a group of mass spectrometer systems located as much as 400 feet away from the shuttle. It can take up to 45 seconds for gas to reach the mass spectrometer, which precludes monitoring for leaks in the final moments before liftoff (the orbiter engines are started at T-00:06 seconds). To remedy the situation, NASA is developing a small rugged mass spectrometer to be used as point-sources around the Space Shuttle.
    Keywords: Space Transportation and Safety
    Type: ASMS Conference; May 28, 2001 - May 31, 2001; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: This work is aimed at understanding the aspects of designing a miniature mass spectrometer (MS) system. A multitude of commercial and government sectors, such as the military, environmental agencies and industrial manufacturers of semiconductors, refrigerants, and petroleum products, would find a small, portable, rugged and reliable MS system beneficial. Several types of small MS systems are evaluated and discussed, including linear quadrupole, quadrupole ion trap, time of flight and sector. The performance of each system in terms of accuracy, precision, limits of detection, response time, recovery time, scan rate, volume and weight is assessed. A performance scale is setup to rank each systems and an overall performance score is given to each system. All experiments involved the analysis of hydrogen, helium, oxygen and argon in a nitrogen background with the concentrations of the components of interest ranging from 0-5000 part-per-million (ppm). The relative accuracies of the systems vary from 〈 1% to approx. 40% with an average below 10%. Relative precisions varied from 1% to 20%, with an average below 5%. The detection limits had a large distribution, ranging from 0.2 to 170 ppm. The systems had a diverse response time ranging from 4 s to 210 s as did the recovery time with a 6 s to 210 s distribution. Most instruments had scan times near, 1 s, however one instrument exceeded 13 s. System weights varied from 9 to 52 kg and sizes from 15 x 10(exp 3)cu cm to 110 x 10(exp 3) cu cm.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: To enter orbit, the Space Shuttle burns 1.8 million liters of liquid hydrogen combined with 0.8 million liters of liquid oxygen through three rocket engines mounted in the aft. NASA monitors the nitrogen-purged aft compartment for increased levels of hydrogen or oxygen in order to detect and determine the severity of a cryogenic fuel leak. Current monitoring is accomplished with a group of mass spectrometer systems located as much as 400 feet away from the Shuttle. It can take up to 45 seconds for gas to reach the mass spectrometer, which precludes monitoring for leaks in the final moments before liftoff (the orbiter engines are started at T-00:06 seconds). To remedy the situation, NASA is developing a small rugged mass spectrometer to be used as point-sensors around the Space Shuttle. As part of this project, numerous mass analyzer technologies are being investigated. Presented here are the preliminary results for one such technology, quadrupole ion trap mass spectrometry (QITMS). A compact QITMS system has been developed in-house at the University of Florida for monitoring trace levels of four primary gases, hydrogen, helium, oxygen, and argon, all in a nitrogen background. Since commercially available QITMS systems are incapable of mass analysis at m/z(exp 2), the home-built system is preferred for the evaluation of QITMS technology.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: ASMS Conference; May 28, 2001 - May 31, 2001; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...