ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: Abstract1. Attempts to understand the demography of natural populations from time-series can be hampered by the fact that changes due to births and deaths may be confounded with those due to movement in and out of the sampling area. 2. We illustrate the problem using a stage-structured time-series of the marine copepod Calanus finmarchicus sampled in the vicinity of a fixed location but where the demography is shown to be inconsistent with the assumption of a closed population. 3. By combining a realistic simulation of the hydrodynamic environment with a model of phenology we infer the time and location at which the stages observed in each sample were recruited as eggs. This yields a spatial and temporal map of the recruitment history required to produce the observed densities. 4. Using an empirical relationship between C. finmarchicus egg production and the abundance of phytoplanktonic food, the spatio-temporal patterns in chlorophyll a can be inferred. The distributions during the spring bloom are spatially heterogeneous, and we estimate that the phytoplankton patches are of the order of 30 km across. This result is robust to substantial variations in the assumed stage-dependent mortalities. 5. We conclude that information on advective transport can be used to make testable predictions about the scale of spatial heterogeneities. These, in turn, imply the appropriate spatial scale over which time-series might be replicated in order to obtain more information about unknown processes such as mortality.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-10
    Description: Here we present a new, pan-Atlantic compilation and analysis of data on Calanus finmarchicus abundance, demography, dormancy, egg production and mortality in relation to basin-scale patterns of temperature, phytoplankton biomass, circulation and other environmental characteristics in the context of understanding factors determining the distribution and abundance of C. finmarchicus across its North Atlantic habitat. A number of themes emerge: (1) the south-to-north transport of plankton in the northeast Atlantic contrasts with north-to-south transport in the western North Atlantic, which has implications for understanding population responses of C. finmarchicus to climate forcing, (2) recruitment to the youngest copepodite stages occurs during or just after the phytoplankton bloom in the east whereas it occurs after the bloom at many western sites, with up to 3.5 months difference in recruitment timing, (3) the deep basin and gyre of the southern Norwegian Sea is the centre of production and overwintering of C. finmarchicus, upon which the surrounding waters depend, whereas, in the Labrador/Irminger Seas production mainly occurs along the margins, such that the deep basins serve as collection areas and refugia for the overwintering populations, rather than as centres of production, (4) the western North Atlantic marginal seas have an important role in sustaining high C. finmarchicus abundance on the nearby coastal shelves, (5) differences in mean temperature and chlorophyll concentration between the western and eastern North Atlantic are reflected in regional differences in female body size and egg production, (6) regional differences in functional responses of egg production rate may reflect genetic differences between western and eastern populations, (7) dormancy duration is generally shorter in the deep waters adjacent to the lower latitude western North Atlantic shelves than in the east, (8) there are differences in stage-specific daily mortality rates between eastern and western shelves and basins, but the survival trajectories for cohort development from CI to CV are similar, and (9) early life stage survival is much lower in regions where C. finmarchicus is found with its congeners, C. glacialis and/or C. hyperboreus. This compilation and analysis provides new knowledge for evaluation and parameterisation of population models of C. finmarchicus and their responses to climate change in the North Atlantic. The strengths and weaknesses of modeling approaches, including a statistical approach based on ecological niche theory and a dynamical approach based on knowledge of spatial population dynamics and life history, are discussed, as well as needs for further research.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical modelling framework designed to simulate microbial dynamics and biogeochemical cycling during initial ecosystem development in glacier forefield soils. However, it is also transferable to other extreme ecosystem types (such as desert soils or the surface of glaciers). The rationale for model development arises from decades of empirical observations in glacier forefields, and enables a quantitative and process focussed approach. Here, we provide a detailed description of SHIMMER, test its performance in two case study forefields: the Damma Glacier (Switzerland) and the Athabasca Glacier (Canada) and analyse sensitivity to identify the most sensitive and unconstrained model parameters. Results show that the accumulation of microbial biomass is highly dependent on variation in microbial growth and death rate constants, Q10 values, the active fraction of microbial biomass and the reactivity of organic matter. The model correctly predicts the rapid accumulation of microbial biomass observed during the initial stages of succession in the forefields of both the case study systems. Primary production is responsible for the initial build-up of labile substrate that subsequently supports heterotrophic growth. However, allochthonous contributions of organic matter, and nitrogen fixation, are important in sustaining this productivity. The development and application of SHIMMER also highlights aspects of these systems that require further empirical research: quantifying nutrient budgets and biogeochemical rates, exploring seasonality and microbial growth and cell death. This will lead to increased understanding of how glacier forefields contribute to global biogeochemical cycling and climate under future ice retreat.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 44 (1982), S. 133-143 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 18 (1980), S. 211-236 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of fish biology 35 (1989), S. 0 
    ISSN: 1095-8649
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Variation in the survival of herring between the egg stage and the age of recruitment to the spawning population has been examined for seven Atlantic herring populations in northern European waters. The sources of the variation have been partitioned between density-dependent and density-independent factors. The magnitude of the density-independent component was found to be related to the scale of the processes controlling the dispersion and distribution of larvae from the various populations. We conclude that the spawning strategies of some populations are adapted to oceanographic conditions to maximize the probability of a particular larval transport pattern, although no single model could account for all spawning strategies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of fish biology 45 (1994), S. 0 
    ISSN: 1095-8649
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The timing of the development of schooling behaviour in Atlantic herring Clupea harengus and the quantitative and qualitative evolution of such behaviour in the larval and post-metamorphic stages were investigated with a simulation model and experimental observations of laboratory-reared fish. Herring larvae started to develop schooling behaviour between the lengths of 35 and 40 mm. This coincided with the beginning of metamorphosis, characterized by ontogenetic changes which require a switch to a different antipredator strategy from that employed by early larvae, while providing the sensory and anatomical mechanisms necessary for the formation of schools. Schooling behaviour was established at the end of metamorphosis (50–55 mm) and its characteristics continued to evolve throughout the early juvenile stage. A critical period in terms of vulnerability to predation is expected between the end of the larval and beginning of the juvenile stages, before schooling behaviour is fully developed. The implications of some of the results for the methodology of future studies are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of fish biology 51 (1997), S. 0 
    ISSN: 1095-8649
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The daily otolith increment growth of individuals in a cohort of fish larvae was simulated by a simple individual-based model over 30 days. The daily otolith growth of an individual larva was dependent on past growth, within fixed limits common to all larvae. The survival of a larva at the end of each day was either a linear function of larval growth or a random outcome, simulating growth-dependent and growth-independent mortality, respectively, The combined effect of the external environment on growth was also studied. Eleven environmental scenarios, favouring or hindering growth at different stages, were tested and compared to runs with no environmental effect on growth. Growth-dependent mortality induced an increase in the average otolith daily increment width amongst surviving larvae. Such an outcome, however, could be negated by an unfavourable environment. The increase in mean growth rate of the population generated by growth-dependent mortality was directly related to the inherent variability in daily otolith growth. With increased variability, the influence of the environment became relatively less important. The effect of the environment on growth was more critical during the early stages of development. A comparison of results generated by the model with patterns observed in data from a field survey of larval herring was consistent with the occurrence of growth-dependent mortality in the sea. The simulation model provided a useful insight into the way in which various processes controlling larval growth interact.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of fish biology 51 (1997), S. 0 
    ISSN: 1095-8649
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The mean properties of larval fish populations do not necessarily reflect the properties of the mean individual. For example, the change in mean length in a population with time may not reflect the average individual growth rate, since individual growth rates and survival probability are linked so that slow growing individuals suffer higher mortality. Hence, mean growth rate indicated from population data could be biased upwards. Factors which influence the magnitude and variability of individual growth rates can exert nonlinear effects on population survival. Two categories of process must be considered: first, the variability in exposure of the average individual as a consequence of individual variability in dispersal through a patchy environment; and second, the intrinsic variability between individuals expressed even under equal exposure conditions. These two aspects have been addressed independently, the first by lagrangian modelling of individual fish larvae linked to spatially resolved hydrodynamic models, and the second by strategic biological modelling. In this paper, progress towards the goal of individually based larval fish ecosystem models is reviewed, highlighting the space and time scales which may be important in such systems, and identifying the gaps in current knowledge of larval biology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...