ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: NASA's Determination of Offgassed Products (Test 7) from materials and assembled articles for spaceflight has evolved since the Apollo program for over 50 years to meet various habitable spacecraft nonmetallic programmatic requirements. Now mandated by NASA STD-6016A, Standard Materials and Processes Requirements for Spacecraft, all nonmetallic materials used in habitable flight compartments, with the exception of ceramics, metal oxides, inorganic glasses, and materials used in sealed containers, must meet the offgassing requirements in NASA-STD-6001B Test 7. This manuscript presents the history of Test 7, beginning with the Apollo spacecraft nonmetallic materials selection guidelines and test requirements in 1967, in which tests were performed in mostly oxygen atmospheres. It progresses through Skylab, Space Shuttle, International Space Station nonmetals testing, and acceptance requirements with milder test environments. This review of the history of Test 7 presents the reader with a perspective on the development and changes undergone since inception to the present. Related NASA standard tests (some now former, discontinued, combined, or supplemental) including Test 6, Odor Assessment, Test 16, Determination of Offgassed Products from Assembled Articles, and Test 12, Total Spacecraft Cabin Offgassing, are discussed in context
    Keywords: Spacecraft Design, Testing and Performance
    Type: ICES-2019-504 , JSC-E-DAA-TN68279 , International Conference on Environmental Systems (ICES 2019); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Concerns were raised when incidental exposure to a proprietary bonding material revealed the material had an irritating odor. The NASA-STD-6001B document describes a supplemental test method option for programs to evaluate materials with odor concerns (Test 6, Odor Assessment). In addition to the supplemental standard odor assessment with less than 10 seconds of exposure, the NASA White Sands Test Facility (WSTF) Materials Flight Acceptance Testing section was requested to perform an odor test with an extended duration to evaluate effects of an extended exposure and to more closely simulate realistic exposure scenarios. With approval from the NASA Johnson Space Center Industrial Hygienist, WSTF developed a 15-minute odor test method. WSTF performed this extended-duration odor test to evaluate the odor and physical effects of the bonding material configured between two aluminum plates, after the safety of the gas was verified via toxicity analysis per NASA-STD-6001B Test 7, Determination of Offgassed Products. During extended-duration testing, odor panel members were arranged near the test material in a small room with the air handlers and doors closed to minimize dilution. The odor panel members wafted gas toward themselves and recorded their individual assessments of odor and physical effects at various intervals during the 15-minute exposure and posttest. A posttest interview was conducted to obtain further information. Testing was effective in providing data for comparison and selection of an optimal offgassing and odor containment configuration. The developed test method for extended exposure is proposed as a useful tool for further evaluating materials with identified odors of concern if continued use of the material is anticipated.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2016-316 , JSC-CN-36418 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-34845 , International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres; Apr 13, 2016 - Apr 15, 2016; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.
    Keywords: Nonmetallic Materials
    Type: JSC-CN-23164 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-26
    Description: NASA's Determination of Offgassed Products (Test 7) from materials and assembled articles for spaceflight has evolved since the Apollo program for over 50 years to meet various habitable spacecraft non-metallic programmatic requirements. Now mandated by NASA-STD-6016B Standard Materials and Processes Requirements for Spacecraft, all nonmetallic materials used in habitable flight compartments,with the exception of ceramics, metal oxides, inorganic glasses, and materials used in sealed containers must meet the offgassing requirements of in NASA-STD-6001B Test 7. This manuscript presents the history of Test 7 beginning with the Apollo spacecraft nonmetallic materials selection guidelines and test requirements in 1967
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-E-DAA-TN70224 , International Conference on Environmental Systems (ICES 2019); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: As part of the qualification of the International Space Station (ISS) fine water mist portable fire extinguisher (PFE), several test methods were developed to determine firefighting capability against stored-energy sources. The most challenging of these devised stored-energy fire test methods proved to be the Lithium-ion (Li-ion) battery fire test scenario. The Orion crew capsule will utilize a different PFE technology from ISS (water spray rather than water mist), which spurred the need for the same type of evaluation focused on the sources of stored energy slated for use on Orion. Laptops were identified as a realistic source for stored-energy fires, requiring a modified Li-ion battery fire test scenario. In addition to open test cell (ambient oxygen concentration) testing to evaluate new proposed PFE performance, sealed chamber (20.9% and elevated oxygen concentration) testing was also performed. Chamber testing included combustion product sampling at various fire progression points for analysis and application to Orion emergency equipment design and response planning. The PFE stored-energy fire test methodology was modified and testing performed. Initial tests indicated ignition of the laptop magnesium laptop cases was possible. Additional tests were performed to characterize the laptop magnesium case fire behavior in various configurations. The new water spray PFE technology proved effective in extinguishing laptop stored-energy fires, and much was learned in the way these types of fires progressed. Findings indicate potential laptop magnesium case ignition mitigation strategies need to be further investigated.
    Keywords: Chemistry and Materials (General)
    Type: ICES-2018-260 , JSC-E-DAA-TN58033 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: An accidental fire involving the Lithium-Ion (Li-ion) battery in a laptop computer is one of the most likely fire scenarios on-board a spacecraft. These fires can occur from a defect in the battery that worsens with time, over-charging the battery and leading to failure or accidental damage caused by thermal runaway. While this is a relatively likely fire scenario, very little is known about the how a laptop computer fire would impact a sealed spacecraft. The heat release would likely cause a pressure rise, possibly exceeding the pressure limit of the vehicle and causing a relief valve to open. The combustion products from the fire could pose a short-term and long-term health hazard to the crew and the fire itself could cause injury to the crew and damage to the spacecraft. Despite the hazard posed by a laptop fire, there is little quantitative data on the fire size, heat release and toxic product formation. This paper presents the results of initial attempts to quantify the fire resulting from a failed laptop fire tested at the NASA White Sands Test Facility (WSTF). The data from the testing is useful to attempt to determine the fire size and characteristics such as maximum heat release rate, total heat release, maximum temperatures and fire duration are determined. Using existing models and correlations for fires, the measured fire characteristics are extrapolated to laptop fires on a vehicle the approximate size of the Orion spacecraft.
    Keywords: Space Transportation and Safety
    Type: ICES-2019-188 , GRC-E-DAA-TN67087 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: A test program was performed to determine the highest pressure in oxygen where materials used in the planned NASA Constellation Program Orion Crew Exploration Vehicle (CEV) Crew Module (CM) would not propagate a flame if an ignition source was present. The test methodology used was similar to that previously used to determine the maximum oxygen concentration (MOC) at which self-extinguishment occurs under constant total pressure conditions. An upward limiting pressure index (ULPI) was determined, where approximately 50 percent of the materials self-extinguish in a given environment. Following this, the maximum total pressure (MTP) was identified; where all samples tested (at least five) self-extinguished following the NASA-STD-6001.A Test 1 burn length criteria. The results obtained on seven materials indicate that the non-metallic materials become flammable in oxygen between 0.4 and 0.9 psia.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-20193
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-36632 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: NASA-STD-6001B states "all nonmetals tested in accordance with NASA-STD-6001 should be retested every 10 years or as required by the responsible program/project." The retesting of materials helps ensure the most accurate data are used in material selection. Manufacturer formulas and processes can change over time, sometimes without an update to product number and material information. Material performance in certain NASA-STD-6001 tests can be particularly vulnerable to these changes, such as material offgas (Test 7). In addition, Test 7 analysis techniques at NASA White Sands Test Facility were dramatically enhanced in the early 1990s, resulting in improved detection capabilities. Low level formaldehyde identification was improved again in 2004. Understanding the limitations in offgas analysis data prior to 1990 puts into question the validity and current applicability of that data. Case studies on Super Koropon (Registered trademark) and Aeroglaze (Registered trademark) topcoat highlight the importance of material retesting.
    Keywords: Nonmetallic Materials
    Type: ICES-2017-348 , JSC-CN-39624 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...