ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-13
    Description: Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-31
    Description: Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men Nature Communications, Published online: 30 January 2017; doi:10.1038/ncomms14146 Brown adipose tissue (BAT) takes up and burns fatty acids for thermogenesis in mice. Here the authors use PET to show that, in humans, cold stimulation increases BAT dietary fatty acid uptake from plasma and oxidative metabolism, although, unlike mice, human BAT takes up less fatty acids than other metabolic tissues.
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-11-16
    Description: In acute promyelocytic leukemia (APL), the variant t(15;17) translocation is responsive to differentiation therapy with retinoic acid (RA) while the t(11;17) APL is a more aggressive disease with poor prognosis. The latter produces two fusion proteins, PLZF-RARa and RARa-PLZF, and both proteins are required for leukemogenesis. To define the role of RARa-PLZF, we ectopically expressed the fusion gene in 32D cells and in primary bone marrow cells. First, our results show that RARa-PLZF inhibits myeloid gene expression, specifically CEBPa targets, which fulfill important function in cell survival and differentiation along the granulocytic lineage. Second, we found that repression by RARa-PLZF is dependent on the binding of C/EBPa to its cognate sequence in the promoter of CEBPa target gene, GCSFR. Third, we confirmed by chromatin immuprecipitation that RARa-PLZF associate with C/EBPa on DNA. Fourth, we showed that as PLZF, RARa-PLZF interact directly with HDAC1 and that this interaction causes a deacetylation of histone H3 at the promoter. This inhibition is reversed by treatment with histone deacetylase inhibitor (TSA) both in vitro and in vivo. Thus, this repression is dependent on direct interaction of RP with C/EBPa and recruitment of HDAC1, causing histone deacetylation at C/EBPa target loci. Finally, our data indicate that C/EBPa activity is severely impaired in leukemic cells from patients with t(11;17) APL, as compared to the t(15;17) APL, which is more amenable to therapy. In summary, our study indicates that the oncogene RARa-PLZF inhibits C/EBPa function through direct protein-protein interaction, and thus contributes to leukemogenesis in t(11;17) APL.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-01-28
    Description: The majority of long-term reconstituting hematopoietic stem cells (LT-HSCs) in the adult is in G0, whereas a large proportion of progenitors are more cycling. We show here that the SCL/TAL1 transcription factor is highly expressed in LT-HSCs compared with short-term reconstituting HSCs and progenitors and that SCL negatively regulates the G0-G1 transit of LT-HSCs. Furthermore, when SCL protein levels are decreased by gene targeting or by RNA interference, the reconstitution potential of HSCs is impaired in several transplantation assays. First, the mean stem cell activity of HSCs transplanted at approximately 1 competitive repopulating unit was 2-fold decreased when Scl gene dosage was decreased. Second, Scl+/− HSCs were at a marked competitive disadvantage with Scl+/+ cells when transplanted at 4 competitive repopulating units equivalent. Third, reconstitution of the stem cell pool by adult HSCs expressing Scl-directed shRNAs was decreased compared with controls. At the molecular level, we found that SCL occupies the Cdkn1a and Id1 loci in primary hematopoietic cells and that the expression levels of these 2 regulators of HSC cell cycle and long-term functions are sensitive to Scl gene dosage. Together, our observations suggest that SCL impedes G0-G1 transition in HSCs and regulates their long-term competence.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-16
    Description: Abstract 4749 Hematopoietic stem cell (HSC) transplantation is the first successful cellular therapy and remains the only treatment providing long-term cure in acute myeloblastic leukemia. At the apex of the hematopoietic system, quiescent HSCs are spared by chemotherapeutic treatments that target proliferating cells and therefore can regenerate the entire blood system of a patient after drug exposure. Nevertheless, the consequence of repeated chemotherapy regimen on HSC function remains to be clarified. We previously showed that Scl/Tal1 gene dosage regulates HSC quiescence and functions when transplanted at limiting dilutions (Lacombe et al., 2010). In the present study, we investigate how massive expansion in vivo influences stem cell functions. To address this question, we optimized a protocol based on 5-fluorouracil (5-FU), an antimetabolite that has been used to treat colon, rectum, and head and neck cancers. In addition, we used Scl+/− mice to address the role of Scl in controlling HSCs expansion post-5-FU. We show that within 7 days following 5-FU treatment, HSCs exit quiescence and enter the cell cycle. To deplete cycling HSCs, we injected a second dose of 5-FU and showed that the stem cell pool was disseminated. Nonetheless, the remaining HSCs proliferated extensively to re-establish the HSC pool, which was twice larger than that of untreated mice. At this point, most HSCs have exited the cell cycle and were back to quiescence. Despite a near normal stem cell pool size and a quiescent status, HSCs from these 5-FU treated mice could not compete against untreated cells to regenerate the host in transplantation assays. Furthermore, we show that this extensive proliferation in vivo severely impaired the clonal expansion of individual HSC as measured by the mean activity of stem cell (MAS). Our results demonstrate that HSCs lose their competitive potential after two 5-FU treatments, suggesting that HSCs have an intrinsic expansion limit beyond which their regenerative potential is impaired. In addition, Scl is haplodeficient for cell cycle entry and cell division but Scl gene dosage does not affect this expansion limit. Therefore, our data dissociate the control of HSC expansion under extensive proliferative stress from cell cycle control during steady state. We surmise that chemotherapy regimen based on repeated administration of 5-FU or other antimetabolites are likely to severely impair long-term stem cell functions. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-02
    Description: Current chemotherapy of pediatric T cell acute lymphoblastic leukemia (T-ALL) efficiently reduces the tumor mass with, however, undesirable long term consequences and remains ineffective in adolescent and adult T-ALL. Furthermore, relapse can be caused by pre-leukemic stem cells (pre-LSCs) that were spared by current protocols and evolved to malignancy. A distinctive characteristic of pre-LSCs is their critical dependence on interactions with the microenvironment for survival, which guided our strategy to target pre-LSCs using niche-based screening assays. Using transgenic mouse models that closely reproduce the human disease, we showed that the SCL/TAL1 and LMO1 oncogenic transcription factors establish a pre-leukemic state by reprogramming normal pro-T cells into aberrantly self-renewing pre-LSCs (Gerby et al. PloS Genetics, 2014). We now provide direct evidence that pre-LSCs are much less chemosensitive than leukemic blasts to current drugs, due to a distinctive lower proliferative state as assessed by real-time imaging in a competitive assay. We therefore designed a robust protocol for high-throughput screening (HTS) of compounds targeting primary pre-LSCs that are maintained on stromal cells engineered for optimal NOTCH1 activation to mimick the thymic microenvironement. The multiparametric readout takes into account the intrinsic complexity of primary cells to specifically monitor pre-LSCs. We screened a targeted library of 1904 compounds and identified UM0119979 that disrupts both cell autonomous and non-cell autonomous pathways: UM0119979 abrogates pre-LSC viability and self-renewal activity in vivo by specifically inhibiting the translation of MYC, a downstream effector of NOTCH1, and preventing SCL/TAL1 activity. In contrast, normal hematopoietic stem/progenitor cells remain functional. Moreover, in vivo administration of UM0119979 efficiently reduced the leukemia propagating activity of primary human T-ALL samples in xenografted mice. Finally, in addition to SCL-LMO-induced T-ALL, our results reveal a novel possibility of therapeutic intervention in MYC-dependent hematologic malignancies. In summary, our screening assay, built on the genetic dependencies of pre-LSCs, revealed their vulnerabilities to compounds that inhibit both the primary oncogenes and non-cell autonomous pathways triggered by the microenvironment. The results illustrate how recapitulating tissue-like properties of primary cells in high throughput screening is a promising avenue for innovation in cancer chemotherapy. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-11-20
    Description: Abstract 2520 Poster Board II-497 The life-long production of blood cells depends on the regenerative capacity of a rare bone marrow population, the hematopoietic stem cells (HSCs). In the adult, the majority of HSCs are quiescent while a large proportion of progenitors are more cycling. The state of quiescence in HSCs is reversible and these cells can be triggered into cycle by chemotoxic injuries, exposure to cytokines in vitro, as well as transplantation in vivo. SCL/TAL1 is a bHLH transcription factor that has a critical role in generating HSCs during development. However, the role of SCL in adult HSCs is still a matter of debate. In the present study, we took several approaches to address this question. Scl expression was monitored by quantitative PCR analysis in a population that contains adult long-term reconstituting HSCs (LT-HSCs) at a frequency of 20–50%: Kit+Sca+Lin-CD150+CD48-. RT-PCR results were confirmed by β-galactosidase staining of these cells in Scl-LacZ mice. We show that Scl is highly expressed in LT-HSC and that its expression correlates with quiescence, i.e. Scl levels decrease when LT-HSCs exit the G0 state. In order to assess stem cell function, we performed several transplantation assays with adult bone marrow cells in which SCL protein levels were decreased at least two-fold by gene targeting or by RNA interference. 1) The mean stem cell activity of HSCs transplanted at ∼1 CRU was two-fold decreased in Scl heterozygous (Scl+/−) mice. 2) In competitive transplantation, the contribution of Scl+/− cells to primitive populations as well mature cells in the bone marrow was significantly decreased 8 months after transplantation. 3) In secondary transplantation assays, Scl+/− HSCs were severely impaired in their ability to reconstitute secondary recipient in stem cells and progenitor populations and in almost all mature lineages. 4) Reconstitution of the stem cell pool by adult HSCs expressing Scl-directed shRNAs was significantly decreased compared to controls. We therefore conclude that SCL levels regulate HSC long term competence. Since Scl levels decrease when LT-HSCs exit the G0 state, we addressed the question whether the cell cycle state of LT-HSCs is sensitive to Scl gene dosage. We stained bone marrow cell populations with Hoechst and Pyronin Y. At steady state, percentage LT-HSCs in G1 fraction appears to be significantly increased in mice lacking one allele of Scl. Furthermore, a three-fold increase in G1 fraction was also observed when cells were infected with Scl-directed shRNA, suggesting that a decrease in Scl levels facilitates G0-G1 transition. At the molecular level, we show by chromatin immunoprecipitation that SCL occupies the Cdkn1a and Id1 loci. Furthermore, in purified Kit+Sca+Lin-CD150+CD48- cells, the expression levels of these two regulators of HSC cell cycle and long-term functions are sensitive to Scl gene dosage. Together, our observations suggest that SCL impedes G0-G1 transition in HSCs and regulates their long-term competence. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-11-16
    Description: The differentiation of hematopoietic cells is tightly controlled by transcription factor complexes, composed of hemato-specific and ubiquitous proteins. The bHLH factor SCL and the LIM-only protein LMO2 are central components of transcription factor complexes and are essential for hematopoiesis. However, the mechanism regulating the assembly of SCL-complexes is unknown. Here we show that SCL, in contrast to LMO, GATA and E proteins, cannot be replaced by other members of its family in hematopoietic gene transactivation and in gel shift assays. Furthermore, we show by GST pull-down assays and by co-immunoprecipitation that interaction with LMO2 is a unique property of SCL, as the neurogenic bHLH NSCL1 related to SCL cannot bind LMO2. By generating SCL-NSCL1 chimeras, and by phylogenetic alignment, we identified the SCL interface that confers transcriptional specificity to the complex. Strikingly, this interface is also necessary for the interaction with LMO2. In contrast with the wild type SCL, the mutant without this interface is not able to enhance erythroid differentiation when overexpressed in hematopoietic cells, as assessed by glycophorin A gene activation, benzidine staining and methylcellulose cultures. Interestingly, we also demonstrate in vivo and in vitro that LMO2 protein levels are greatly increased in the presence of SCL, while mRNA levels remain constant. When the SCL interface described above is mutated, LMO2 protein level is no longer increased, suggesting that the accumulation of LMO2 is mediated by a direct interaction with SCL. In primary hematopoietic cells, when SCL protein levels are genetically reduced by LacZ insertion into one allele in the SCL locus, we observe a dramatic decrease in LMO2 protein levels. In addition, in the TF-1 hematopoietic cell line, most of the LMO2 protein (90%) is found associated with SCL and/or Ldb1, suggesting that free LMO2 is rapidly degraded. Thus, SCL levels determine LMO2 levels in hematopoietic cells. Next, we provide direct evidence that LMO2 is a target for proteasomal degradation. First, we show that LMO2 is ubiquitinated in vivo, by GST purification. Second, by using the ts20 cell line expressing a temperature-sensitive ubiquitin-activating E1 enzyme, we show that LMO2 degradation requires a functional ubiquitin conjugation system, since LMO2 is not degraded when E1 is inactive. Third, we show that the half-life of LMO2 is very short, and it can be increased with the proteasome inhibitor MG132. Finally, a similar increase in LMO2 half-life can be observed when SCL is co-expressed with LMO2. These data indicate that SCL stabilizes LMO2, which is otherwise rapidly degraded by the ubiquitin-proteasome pathway in absence of its interacting partners. Taken together, our results strongly suggest that SCL, by binding and stabilizing LMO2, is a critical determinant of the hematopoietic transcriptional specificity. The interaction between SCL and LMO2 is an essential nucleation step for the assembly of SCL-complexes on DNA, where the regulation of LMO2 levels appears to be the rate-limiting step. We propose that protein stability is a new mechanism of regulation in the formation of SCL complexes, required for proper gene activation during eryhtroid differentiation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2020-11-05
    Description: The inferior cure rate of T-cell acute lymphoblastic leukemia (T-ALL) is associated with inherent drug resistance. The activating NOTCH1 gene mutations have been reported to cause chemoresistance at the stem cell level1. Direct NOTCH1 inhibition has failed in clinical trials due to a narrow therapeutic window but targeting key oncogenic and metabolic pathways downstream of mutated NOTCH1 may offer novel approaches. We previously reported that rapid transformation of thymocytes at the DN3 differentiation stage into preleukemic stem cells (pre-LSC) requires elevated Notch1 in addition to the presence of Scl/Lmo11. Notably, we showed that cellular metabolism of NOTCH1-mutated T-ALLs depends on Oxidative Phosphorylation (OxPhos) and that OxPhos inhibition using the complex I inhibitor IACS-010759 (OxPhos-i) is efficacious in NOTCH1-mutated T-ALL patient derived xenografts (PDXs)2. Here, we investigated the link between NOTCH1-mutated chemoresistance and OxPhos in pre-leukemic and leukemic cells, utilizing comprehensive molecular and functional assays. We hypothesized that chemotherapy aided by OxPhos-i overcomes chemoresistance, depletes LSCs and combats T-ALL. First, we analyzed the role of OxPhos in downstream Notch1 targets at the pre- and leukemic stage considering four stages of thymocyte differentiation (D1-D4), in a mouse model of human T-ALL1. Gene set enrichment analysis (GSEA) implicated increased expression of Notch1 target genes starting at DN1, and OxPhos target genes were the highest-ranked gene set at DN3. Next, activation of Notch1 by its ligand DL4 and inhibition of OxPhos reduced viability of pre-LSCs, indicating that ligand-dependent activation of Notch1 signaling upregulates the OxPhos pathway and sensitizes pre-LSCs to OxPhos-i. To clarify the role of Notch1 signaling, we examined the effect of IACS-010759 on pre-leukemic thymocytes harboring LMO1, SCL-LMO1, NOTCH1, LMO1-NOTCH1 and SCL-LMO1-NOTCH1 with and without DL4 stimulation. We found that in the absence of DL4, only thymocytes harboring the Notch1 oncogene responded to OxPhos-i, whereas all DL4-stimulated thymocytes responded regardless of Notch1 status (Fig. 1a). In addition, at the leukemic stage, we found elevation of the OxPhos pathway driven by oncogenic Notch1 when we compared transcriptomes of SCL-LMO1 induced T-ALL in the presence or absence of the NOTCH1 oncogene. In line with the murine T-ALL NOTCH1 model, we performed transcriptome analysis of two independent T-ALL patient cohorts prior to chemotherapy, COG TARGET ALL (n=263) and AALL1231 (n=75), comparing transcriptomes of NOTCH1-mutated vs NOTCH1-wt T-ALLs. We found co-segregation of NOTCH1 mutations with significant upregulation of OxPhos and TCA cycle genes and downregulation of apoptosis signaling. Aiming to reverse the NOTCH1-controlled anti-apoptotic program and chemoresistance, we next tested the combination of Vincristine, Dexamethasone and L-Asparaginase (VXL) with IACS-010759. When compared to vehicle, OxPhos-i or VXL alone, only the VXL-OxPhos-i treatment caused an energetic crisis indicated by decreased OCR and ECAR (Seahorse), which translated to a profound reduction of viability (CTG, flow cytometry) in T-ALL cell lines (n=9) and primary T-ALL samples (n=5). Additionally, the IACS-VXL combination in vivo resulted in pan-metabolic blockade, which caused metabolic shut-down and triggered early induction of apoptosis in leukemic cells in peripheral blood, spleen and bone marrow (Fig. 1b). Single cell Proteomic analysis (CyTOF) of spleen showed reduced expression of cell proliferation marker -ki67, c-myc, ERK and p38 proteins, and reduction in number of leukemic cells. Finally, this combination therapy resulted in reduced leukemia burden and extension of overall survival across all three aggressive NOTCH1-mutated T-ALL PDX models (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...