ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
  • 2
    Publication Date: 2006-11-16
    Description: An enhanced tryptophan metabolism mediated by the enzymatic activity of indoleamine 2,3 dioxygenase (IDO) has recently been demonstrated to profoundly affect T cell responses. By the present study we explored whether human dendritic cells (DCs) displaying high IDO expression and activity, down-regulate allogeneic T cell responses. A comparison of lipopolysaccaride (LPS), interferon-γ (IFN-γ), and CD40L as DC maturation agents showed that most abundant IDO expression and activity in DCs was observed when immature DCs were exposed to a combination of LPS and IFN-γ for 48 hours. This time period of maturation was associated with the development of a mature DC phenotype. In contrast, semi-mature DCs, i.e. DCs matured for 4 hours only, were IDO negative. In co-cultures with allogeneic T cells both types of DCs began to metabolize tryptophan, as determined by decreasing concentrations of tryptophan and increasing concentrations of kynurenines in cell culture supernatants, but mature IDO positive DCs did so at a faster rate (complete consumption of tryptophan within 16 hours of co-culture) than semi-mature DCs. A comparison of the allo-stimulatory capacity of semi-mature IDO negative DCs and mature IDO positive DCs showed that at a high DC/T cell ratio (1:1) IDO positive DCs had a significantly reduced capacity to stimulate allogeneic T cells (median 63% reduction, n=5). The reduction of the allogeneic T cell response induced by IDO positive DCs was reversed upon the addition of the IDO inhibitor methylhydantoin-tryptophan to the co-cultures, suggesting an IDO dependent mechanism. Furthermore, allogeneic T cells exposed to IDO positive DCs had an increased rate of apoptosis in the activated cell fraction and after 8 days of co-culture contained a cell fraction (~30%) displaying a CD4+CD25+highFOXP3+ phenotype. These latter cells, when enriched by fluorescent activated cell sorting (FACS), were able to suppress the proliferative response of naive T cells to anti-CD3 mediated stimulation, which indicates the generation of a regulatory T cell population by IDO positive DCs. Together, these findings suggest that the amount of IDO expression and activity by DCs is one feature to govern the type of response of stimulated T cells. Human DCs can be induced to display high levels of IDO expression and activity and, thereby, acquire the ability to effectivley modulate allogeneic T cell responses towards tolerance by eliminating allo-reactive T cells through apoptosis and augmentation of their regulatory rather than their effector potential. Our current approaches address whether this property can be employed to use DCs for the generation of allo-antigen specific tolerance in the setting of hematopoietic cell transplantation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-16
    Description: Abstract 1892 Patients with advanced hematological malignancies remain at high risk for eventual disease progression following reduced intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We hypothesized that vaccination with whole leukemia cells during the critical period of immune reconstitution early after transplant may enhance antitumor immunity and facilitate expansion of leukemia-reactive T cell responses. We tested this hypothesis in a prospective clinical trial, in which patients with advanced chronic lymphocytic leukemia (CLL) received up to 6 vaccine doses initiated between day 30–45 following RIC allo-HSCT. Each vaccine consisted of 1×107 irradiated autologous tumor cells admixed with 1×107 irradiated K562 bystander cells secreting GM-CSF (GM-K562). All patients received tacrolimus and mini-methotrexate as graft-versus-disease (GvHD) prophylaxis. Tacrolimus was maintained at therapeutic levels during the vaccination period without taper. Twenty-two patients were enrolled, all with advanced disease (median number of prior therapies 3; range 2–11). Many of the leukemias expressed markers associated with aggressive disease (e.g. unmutated IgVH - 68%) and displayed high-risk cytogenetic abnormalities (sole del(11q) - 41%; sole del(17p) - 23%; del(11q and 17p) - 18%). Greater than 50% (n=13) of patients had persistent marrow involvement (≥10%) at time of allo-HSCT. Eighteen of 22 subjects were vaccinated after allo-HSCT and received a median of 6 (range 1–6) vaccines. The remaining 4 patients were precluded from vaccination due to development of acute GvHD before day 45. Vaccines were generally well tolerated, but mild, transient injection site erythema was common. Only one grade 4 event (neutropenia) with a possible attribution to treatment occurred. We observed a similar incidence of grade II-IV aGvHD at 1 year in the 18 vaccinated patients (39%; 95% CI: 17–61%) and 42 control CLL patients that underwent RIC allo-HSCT at our institution from 2004–2009 (31%; 95%CI: 18–46%). At a median follow-up of 2.9 (range 1–4) years, the estimated 2-year rates of progression-free survival and overall survival of vaccinated study participants were 80% (95% CI: 54–92%) and 84% (95% CI: 58–95%). With these promising clinical results, we next focused on gaining insight into the mechanism that generated the observed clinical graft-versus-leukemia (GvL) responses. To delineate the specific contribution of vaccination to the overall GvL effect, we performed T cell assays to detect CLL-specific reactivity in serial pre- and post-HSCT samples obtained from vaccinated patients (n=9) who received median of 6 vaccines (range 3–6). In comparison, we examined T cell responses in study subjects (n=4) that developed aGvHD at a median of 44.5 days (range 26–56) after HSCT; and control CLL patients (n=4; no vaccine, no GvHD in the early post-transplant period) that were not enrolled in the study. Although early post-transplant vaccination had no impact on recovering absolute T cell numbers, reactivity of CD8+ T cells from the vaccinated patients was consistently directed against autologous tumor cells but not alloantigen bearing-recipient cells (PHA T cell blasts and fibroblasts) in IFNγ ELISpot assays. A peak response against autologous tumor cells was reached at day 60 after allo-HSCT (average 221 SFC/5×105 cells vs. 29 and 33 average SFC/5×105cells for PHA blasts and fibroblasts, respectively). CD8+ T cell clones were isolated from 4 vaccinated study subjects by limiting dilution and 17% (range 13–33%) reacted solely against CLL-associated antigens. In contrast, broad CD8+ T cell reactivity indicating an alloantigen response was observed in GvHD patients, while no increase in T cell reactivity against tumor-associated or alloantigens was seen in control patients. Tumor-reactive CD8+ T cells isolated from vaccinated patients secreted a broad profile of effector cytokines (GM-CSF, TNFα and IP10). Moreover, the amount of cytokines secreted by these CLL-specific CD8+ T cells steadily increased following early post-transplant vaccination, but not after allo-HSCT alone or in relation to GvHD. Our studies reveal that vaccination with autologous whole CLL/GM-K562 cells between days 30–100 after allo-HSCT is associated with induction of immunity against recipient CLL cells, and suggest that this is an effective strategy for promoting GvL following RIC allo-HSCT. Disclosures: Brown: Genzyme, Celgene: Research Funding; Calistoga, Celgene, Genentech, Pharmacyclics, Novartis, Avila: Consultancy. Cutler:Pfizer, inc: Research Funding; Astellas, Inc: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-11-19
    Description: Abstract 2432 Chronic lymphocytic leukemia (CLL) is one of the most familial of all cancers but the genetic basis of this heritability remains poorly characterized. Families with very strong inheritance of CLL have been described in the literature, and recently the occurrence of CLL in one such family was associated with a polymorphism in the DAPK gene. Here we report the genomic characterization of a family in which CLL appears to be inherited in a Mendelian autosomal dominant manner. Within this family, five of eleven siblings of the first generation were affected, and one of those affected siblings had five children, of whom three were also affected (the second generation). The children of the second generation are currently aged 20–30 and hence too young to know whether they will develop CLL. We performed high-density single-nucleotide polymorphism (SNP) array analysis and gene expression profiling on tumor and germline DNA from four of the offspring of the second generation, as well as six of their children. Analysis of the SNP array data revealed a significant germline amplification of 6p, spanning 0–720 Mb and encompassing a known copy number variant (CNV) region but significantly larger than the CNV region. This amplification was found in both affected individuals with samples available from the second generation, and was transmitted by each of them to one of their two children in the third generation. This amplification was absent from the two unaffected members of the second generation, their children, or any of the other 189 individuals with CLL who were analyzed in our high-density SNP array dataset. None of the unaffected individuals with or without the amplification had evidence of monoclonal B cell lymphocytosis (MBL) by highly sensitive flow cytometry. These unaffected individuals also lacked any PCR-detectable oligoclonal or monoclonal immunoglobulin heavy chain gene rearrangement suggestive of MBL. The region of amplification contains four protein-coding genes: EXOC2, DUSP22, HUS1B and IRF4. We sequenced the coding regions of these four genes and the 5` and 3` UTRs of IRF4 in all family members, but found no somatic mutations in this family. All four genes were also sequenced in 92 other familial CLLs, identifying no somatic mutations. We then analyzed our gene expression profiling data to assess whether any genes in this region were altered in the affected individuals with the amplification. This analysis revealed a significant 1.74X increase in IRF4 expression in the CLLs with the amplification compared to those without (q value 〈 0.001). By Western blotting, we confirmed that IRF4 protein was increased approximately two-fold in amplified compared to non-amplified samples. These data suggest that the amplification may target IRF4, which has been previously implicated in CLL by a genome wide association study that identified a tag SNP in its 3` UTR as a CLL risk allele. Further analysis of our SNP data demonstrated allele specific amplification in this region, and mass-spectrometric genotyping confirmed enrichment of the CLL risk allele in the individuals with amplification. We conclude that amplification of IRF4 carrying the risk allele for CLL appears likely to be the culprit predisposing to CLL in this family. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-27
    Description: Key Points Marrow CD8+ T-cell infiltrates may be a novel predictor of response to donor lymphocyte infusions in patients with relapsed CML. Reversal of T-cell exhaustion is tightly linked to effective antileukemia responses to donor lymphocyte infusions.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-11-16
    Description: Abstract 1903 Donor lymphocyte infusion (DLI) can provide curative treatment for relapsed hematologic malignancies following allogeneic hematopoietic stem cell transplant (HSCT). However, the precise mechanism by which DLI eliminates leukemia cells in vivo has not been established. We hypothesized that marrow-infiltrating immune populations play a critical role in DLI responses since marrow is the primary site of disease and a reservoir of high-avidity antigen-specific memory T cells that can recognize tumor antigens, therefore potentially mediating graft-versus-leukemia (GvL) responses. We performed immunohistochemical staining of immune cells in serial marrow biopsies collected before and after DLI from 29 patients with relapsed CML. Twenty-two patients achieved cytogenetic remission within twelve months (‘responders’) while 7 patients demonstrated persistent disease (‘non-responders’). While no significant changes in the numbers of circulating T cells were seen between patient groups following DLI, the median number of marrow-infiltrating CD8+ T cells increased 2-fold in responders but remained unchanged in non-responders (P=0.02), demonstrating that clinical response to DLI is associated with T cell responses at the site of disease that may not be apparent in the peripheral blood. To investigate whether immune cell infiltration of the marrow could predict DLI response, we compared pre-treatment samples from both patient groups. Responders exhibited significantly higher proportions of CD8+ T cells in pre-DLI marrow compared to non-responders (5% vs 2.5%; P=0.01). Because disease burden is a known risk factor for ineffectual DLI response, we evaluated the interaction between disease burden and pre-existing CD8+ T cell infiltrate through the clinical course of 8 patients with high (≥70%) pre-treatment marrow cellularity. Three of 8 had ≥5% CD8+ T cell marrow infiltrates, and all 3 subsequently achieved cytogenetic remission. In contrast, 5 of 8 patients had
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-11-19
    Description: Abstract 2417 Marrow is a major site of disease development and progression for chronic lymphocytic leukemia (CLL), as well as a priming site for antigen-specific T cells and a reservoir for memory T cells. To determine the extent to which T cells in the marrow microenvironment have an altered phenotype and function in CLL, we analyzed the immunophenotypic characteristics of marrow-infiltrating T cells of 18 CLL patients compared to 11 normal donors. Chemotherapy-naïve CLL patients (n=7) possessed comparable quantities of marrow T cells compared to normal donors (median CD8+ T cells/μl = CLL 904 vs normal 1247; median CD4+ T cells/μl = CLL 1975 vs normal 1110). However, we identified several aberrant characteristics among T cells infiltrating the marrow of CLL patients. First, the ratio of CD8+ to regulatory T cells (CD4+CD25+FOXP3+) was depressed (median ratio CLL 14 vs normal 41), indicating more regulatory T cells per effector T cells in CLL. Second, compared to normal marrow T cells, CLL marrow contained proportionally fewer functional effector CD8+ T cells (CD27+CD28+)(median normal 57%, CLL 48%) and more immunosenescent cells (CD27-CD28-)(median normal 21%, CLL 30%). Third, the T cell differentiation state of CLL CD8+ T cells was skewed to favor a phenotype of increased terminal differentiation (CD45RA+CCR7-)(median CLL 55% vs normal 40%), and decreased naïve (CD45RA+CCR7+) cells (median CLL 21% vs normal 31%) compared to normal donors. These differences were further accentuated in CLL samples collected within 4 months from treatment with conventional chemotherapy (n=11). Finally, by immunohistochemical staining of CLL marrow biopsies, we observed marrow-infiltrating lymphocytes to express PD-1 (mean of infiltrating T cells, untreated CLL 12%, treated CLL 35%, present even 〉6 months after therapy), a marker associated both with immuno-activation and inhibition. While the majority of PD-1+ CD8 T cells of normal donors (n=5) and treated CLL patients (n=4) were differentiated towards effector memory (CD45RA-CCR7-) cells (median normal 46% vs untreated CLL 16%, p=0.07; treated CLL 61%), the PD-1+ T cells from untreated CLL patients (n=5) were terminally differentiated (CD45RA+CCR7+)(median normal 23% vs untreated CLL 65%, p=0.04; treated CLL 24%). These results indicate an exhausted rather than an activated T cell phenotype in untreated patients. Paired immunophenotypic analysis on blood and marrow from the same individuals (n=9) demonstrated an increased percentage and intensity of PD-1 expression on T cells from marrow compared to blood (percentage CD8+ T cells BM vs blood p = 0.05). Interestingly, PD-1 was also detected on CLL cells (n=16) but not normal B cells (median normal 0%, vs CLL 17%, p = 0.004). The ligand for PD-1, PD-L1, was detected in the marrow vasculature by immunohistochemical staining of biopsies, suggesting that the marrow microenvironment plays a role in the induction of PD-1 associated immunosuppression. Ligation of blood PD-L1 on CLL-T cells led to a 2-fold decrease in activation (measured as CD69 expression) of CD3/CD28 stimulated patient T cells. In summary, we identify several phenotypic and functional alterations within marrow-infiltrating T cells of CLL patients. We speculate these together may contribute to impaired priming of host immunity against the tumor. The PD-1 pathway appears to be activated in CLL, especially in the setting of chemotherapeutic treatment. Since anti-PD1 antibodies are now clinically available, it may be possible to target this pathway to improve anti-tumor responses. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-18
    Description: Abstract 978 Although chronic lymphocytic leukemia (CLL) is sensitive to graft-versus-leukemia (GVL) effects, strategies to enhance donor-derived tumor immunity are needed to prevent relapse and improve outcomes after allogeneic hematopoietic stem cell transplantation (HSCT). Post-transplant infusion of mature donor T cells specific for recipient CLL cells could provide an effective treatment approach personalized to the individual tumor. However, unmanipulated CLL cells are weak antigen presenting cells (APCs), expressing low levels of costimulatory molecules, and therefore only poorly stimulate the expansion of tumor-reactive T cells. To overcome this barrier, we evaluated a novel formulation of human recombinant CD40L, a molecule known to enhance the immunostimulatory capacity of normal and malignant B cells. This formulation of CD40L (designated CD40L-Tri) was designed with the extracellular domain of CD40L connected by a long flexible linker to a leucine zipper for trimerization and an octahistidine motif for purification. We compared the immunostimulatory activity of CD40L-Tri with a murine fibroblast cell line that was engineered to express human CD40L (tCD40L/NIH3T3). In 3 of 3 cases, CD40L-Tri (at 0.5, 1, and 2 mg/ml) significantly expanded normal CD19+ B cells over 14 days by an average fold change of 21.5, 27.0 and 29.5, respectively (all p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-11-20
    Description: Abstract 1850 Poster Board I-876 Multiple Myeloma (MM) is characterized by the clonal proliferation of malignant plasma cells in the bone marrow. Despite current therapeutic approach and prolongation of the median survival, new therapies are urgently needed. Integrins are cell surface receptors which mediate both cell-cell adhesion and cell-extracellular matrix (ECM) protein adhesion. beta1-integrins, including very-late antigen-4 (VLA-4;á4β1), are typically expressed on MM cells. In MM, VLA-4-mediated binding to ECMS and bone marrow stromal cells (BMSCs) confers protection against drug-induced apoptosis and triggers transcription and secretion of IL-6, the major MM growth and survival factor. In addition to up-regulation of cell surface-clustering, integrin activity can also be triggered by multiple agonists through ‘inside-out’ signaling, independent of changes in integrin expression levels. Importantly, VEGF-induced migration of MM cells on fibronectin is also associated with β1-integrin- and PI3-kinase- dependent PKC activation. Targeting VLA-4 is therefore of potential high therapeutic interest in MM. Indeed, an antibody against murine á4 induces inhibition of MM growth in a murine model. Natalizumab is a recombinant humanized IgG4 monoclonal antibody, which belongs to a new class of molecules known as selective adhesion molecule (SAM) inhibitors and binds to á4-integrin. Clinically, Natalizumab has demonstrated activity in patients with multiple sclerosis and Crohn's disease. Here we tested the potential therapeutic role of Natalizumab on MM cell survival, and migration in the BM microenvironment. VLA-4 is expressed by all MM cell lines investigated (NCIH929, RPMI8226, INA-6, MM.1S, and OPM2). Functionally, Natalizumab but not a control antibody, triggered dose-dependent inhibition of MM cell adhesion to fibronectin, BMSCs, and endothelial cells (ECs). Importantly, inhibition of adhesion to fibronectin, BMSCs, or ECs was observed in MM cells pretreated with Natalizumab. Moreover, inhibition of MM cell adhesion to fibronectin, BMSCs, or ECs was also observed when Natalizumab was added to already adherent MM cells. Taken together, Natalizumab decreases adhesion of non-adherent MM cells as well as binding of already adherent MM cells to non-cellular and cellular components of the microenvironment. Given the protective role of the microenvironment on MM cell survival, we next sought to evaluate the chemosensitizing activity of Natalizumab. Specifically, we investigated dose- and time- dependent effects of Natalizumab, alone and when combined with conventional and novel therapies, on MM cells. Our results show that Natalizumab alone did not inhibit growth or survival of MM cells when cultured without components of the microenvironment. However, Natalizumab enhanced sensitivity of tumor cells to both bortezomib and dexamethasone in MM-BMSC and, MM-EC co-cultures. These data indicate a potential role of Natalizumab in bortezomib- and dexamethasone-containing treatment regimens including MPV. Moreover, Natalizumab decreases IL-6 and VEGF secretion triggered in MM-BMSC co-cultures. Consequently, angiogenesis triggered by supernatants of Natalizumab- treated MM-BMSC co-cultures was inhibited. Moreover, Natalizumab blocked MM cell migration on fibronectin triggered by both VEGF and IGF-1. Finally, our previous results implicate an PKC signaling in MM cell migration on fibronectin, and our current results show that Natalizumab inhibits phosphorylation of á4 integrins and PKC induced by co-stimulation with VEGF/ fibronectin, IGF-1/ fibronectin, and patient serum. Taken together, our data indicate a potential therapeutic role of Natalizumab in MM. Ongoing studies evaluating the effect of Natalizumab in a SCID-hu murine model of MM will also be reported. Disclosures: Podar: Biogen Idec: Research Funding. Off Label Use: natalizumab, integrin inhibitor. Zimmerhackl:Biogen Idec: Research Funding. Olsen:Biogen Idec: Employment.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-10-08
    Description: The role of the tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase (IDO) in down-regulating human alloresponses has recently been controversially debated. We here demonstrate that human monocyte-derived dendritic cells (mDCs) can be endowed with sustained IDO competence in vitro by 48-hour activation with lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). IFN-γ also amplified proinflammatory cytokine secretion during activation. Yet, on reculture after activation cytokine production ceased, whereas IDO enzymatic activity continued. Manipulation of tryptophan metabolism did not affect proinflammatory cytokine release, suggesting that IFN-γ triggers IDO activity and proinflammatory cytokine release as distinct cellular programs. IDO-competent DCs down-regulated allogeneic T-cell responses, but this IDO-mediated effect was overcome by slightly modifying cell culture conditions. Nevertheless, the CD4+CD25+ T-cell fraction stimulated by IDO-competent DCs displayed substantial suppressor activity. This suppressive activity (1) required allogeneic stimulation for its induction, (2) affected third-party T cells, and (3) was reduced by the IDO inhibitor methyl-thiohydantoin-tryptophan. It became also manifest when DC/T-cell cocultures were initiated with naive (CD4+CD25−CD45RA+) T cells, indicating the differentiation of adaptive regulatory T cells. Together, these findings suggest that IFN-γ triggered IDO competence in human mDCs constitutes a critical factor for endowing allogeneic T cells with regulatory activity.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...