ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: High-load resistance exercise (HRE) and low-load blood flow restricted (BFR) exercise have demonstrated efficacy for attenuating unloading related muscle atrophy and dysfunction. In recreational exercisers, protein consumption immediately before and/or after exercise has been shown to increase the skeletal muscle anabolic response to resistance training. PURPOSE: To compare the skeletal muscle adaptations when chocolate milk intake was coupled with HRE or low-load BFR exercise [3 d/wk] during simulated lower limb weightlessness. METHODS: Eleven subjects were counterbalanced [based on age and gender] to HRE (31 +/- 14 yr, 170 +/- 13 cm, 71 +/- 18 kg, 2M/3W) or low-load BFR exercise (31 +/- 12 yr, 169 +/- 13 cm, 66 +/- 14 kg, 2M/4W) during 30 days of unilateral lower limb suspension (ULLS). Both HRE and BFR completed 3 sets of single leg press and calf raise exercise during ULLS. BFR exercise intensity was 20% of repetition maximum (1RM) with a cuff inflation pressure of 1.3 systolic blood pressure (143 4 mmHg). Cuff pressure was maintained during all 3 sets including rest intervals (90s). HRE intensity was 75% 1RM and was performed without cuff inflation. Immediately (〈10 min) before and after exercise 8 fl oz of chocolate milk (150 kcal, 2.5g total fat, 22g total carbohydrate, 8g protein) was consumed to optimize acute exercise responses in favor of muscle anabolism. ULLS analog compliance was assessed from leg skin temperature recordings and plantar accelerometry. Muscle cross-sectional area (CSA) for knee extensor and plantar flexor muscle groups were determined from analysis of magnetic resonance images using ImageJ software. 1RM strength for leg press and calf raise was assessed on the Agaton exercise system. Muscular endurance during leg press and calf raise was evaluated from the maximal number of repetitions performed to volitional fatigue using 40% of pre-ULLS 1RM. RESULTS: Steps detected by plantar acceleometry declined by 98.9% during ULLS relative to an ambulatory control period. Average skin temperature of the unloaded calf declined from 27.4 C to 26.8 C (-2.1%), while there was a slight increase (+1.1%) in skin temperature in the loaded calf (27.6 C to 27.9 C). Collectively, these measures indicate strong subject compliance with the ULLS analog. Unloaded limb work performed during leg press (1514 +/- 334 vs. 576 +/- 103) and calf raise (2886 +/- 508 vs. 1233 +/- 153) exercises sessions was greater in HRE vs. BFR, respectively. Leg press training loads were 44 +/- 7 kg in HRE compared to 11 +/- 1 kg in BFR. Similarly, calf raise training loads were 81 +/- 11 kg in HRE and 16 +/- 1 kg in BFR. Pre to post-ULLS training adaptations in the unloaded leg are shown in the table. CONCLUSION: The preliminary results of this investigation suggest when HRE is optimized for muscle anabolism during unloading muscle size and strength are preserved (or enhanced) at the expense of muscle endurance. In contrast, when BFR exercise is optimized for muscle anabolism during unloading muscle endurance is preserved (or enhanced) at the expense of muscle size and strength
    Keywords: Aerospace Medicine
    Type: JSC-CN-25214 , 2012 NASA Human Research Program Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Pre- and post-flight dynamometry is performed on International Space Station crewmembers to characterize microgravity-induced strength changes. Strength is not assessed in flight due to hardware limitations and there is poor understanding of the time course of in-flight changes. PURPOSE: To assess the reliability of a prototype dynamometer, the X1 Exoskeleton (EXO) and its agreement with a Biodex System 4 (BIO). METHODS: Eight subjects (4 M/4 F) completed 2 counterbalanced testing sessions of knee extension/flexion (KE/KF), 1 with BIO and 1 with EXO, with repeated measures within each session in normal gravity. Test-retest reliability (test 1 and 2) and device agreement (BIO vs. EXO) were evaluated. Later, to assess device agreement for ankle plantarflexion (PF), 10 subjects (4 M/6 F) completed 3 test conditions (BIO, EXO, and BIOEXO); BIOEXO was a hybrid condition comprised of the Biodex dynamometer motor and the X1 footplate and ankle frame. Ankle comparisons were: BIO vs. BIOEXO (footplate differences), BIOEXO vs. EXO (motor differences), and BIO vs. EXO (all differences). Reliability for KE/KF was determined by intraclass correlation (ICC). Device agreement was assessed with: 1) repeated measures ANOVA, 2) a measure of concordance (rho), and 3) average difference. RESULTS: ICCs for KE/KF were 0.99 for BIO and 0.96 to 0.99 for EXO. Agreement was high for KE (concordance: 0.86 to 0.95; average differences: -7 to +9 Nm) and low to moderate for KF (concordance: 0.64 to 0.78; average differences: -4 to -29 Nm, P〈0.05). BIO vs. BIOEXO PF concordance ranged from 0.89 to 0.92 and mean differences ranged from -9 to +3 Nm (BIO 〈 BIOEXO). BIOEXO vs. EXO PF concordance ranged from 0.73 to 0.80 while mean differences were -18 to -36 Nm (BIOEXO 〈 EXO, P〈0.05). PF concordance for BIO vs. EXO was slightly lower (0.61 to 0.84) and mean differences were greater (-27 to -33 Nm; BIO 〈 EXO, P〈0.05). CONCLUSION: BIO and EXO were similarly reliable for KE and KF. KE measures produced high agreement between devices; KF did not. For ankle PF, torque differences due to the two footplates were small. However, the X1 motor reports greater torques than the Biodex motor during PF. This first prototype provides proof of concept for a reliable, robotic-based exoskeleton to perform portable dynamometry for large muscle groups of the lower body.
    Keywords: Aerospace Medicine
    Type: JSC-CN-29878
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: PURPOSE: 1) To compare the test-to-test reliability of Muscle Atrophy Research and Exercise System (MARES) with a standard laboratory isokinetic dynamometer (ISOK DYN) and; 2) to determine if measures of peak torque and total work differ between devices. METHODS: Ten subjects (6M, 4F) completed two trials on both MARES and an ISOK DYN in a counterbalanced order. Peak torque values at 60 deg & 180 deg / s were obtained from five maximal repetitions of knee extension (KE) and knee flexion (KF). Total work at 180 deg / s was determined from the area under the torque vs. displacement curve during twenty maximal repetitions of KE and KF. Reliability of measures within devices was interpreted from the intraclass correlation coefficient (ICC) and compared between devices using the ratio of the within-device standard deviations. Indicators of agreement for the two devices were evaluated from: 1) a calculation of concordance (rho) and; 2) the correlation between the mean of measures versus the delta difference between measures (m u vs delta). RESULTS: For all outcome measures ICCs were high for both the ISOK DYN (0.95-0.99) and MARES (0.90-0.99). However, ratios of the within-device standard deviation were 1.3 to 4.3 times higher on MARES. On average, a wide range (3.3 to 1054 Nm) of differences existed between the values obtained. Only KE peak torque measured at 60 deg & 180 deg / s showed similarities between devices (rho = 0.91 & 0.87; Pearson's r for m u vs delta = -0.22 & -0.37, respectively). CONCLUSION: Although MARES was designed for use in microgravity it was quite reliable during ground-based testing. However, MARES was consistently more variable than an ISOK DYN. Future longitudinal studies evaluating a change in isokinetic peak torque or total work should be limited within one device.
    Keywords: Aerospace Medicine
    Type: JSC-CN-21904 , 18th IAA Humans in Space Symposium; Apr 11, 2011 - Apr 15, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...