ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 157 (1975), S. 125-140 
    ISSN: 1432-0878
    Keywords: Smooth muscle cells ; Pulmonary artery ; Calcium distribution ; Hypoxia ; Rat, swine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Exposure to hypoxia caused an increase in the hematocrit and right heart weight of experimental rats, but did not affect calcium-45 uptake by pulmonary arterial smooth muscle cells. However, autoradiographic studies showed that hypoxia apparently caused a shift of 45-Ca from primarily extracellular sites in arteries of control rats to intracellular sites in tissues of hypertensive rats. Cytochemical studies of calcium distributions in pulmonary arterial smooth muscle cells support the autoradiographic data and show that in both rats and swine the majority of pyroantimonate granules occur extracellularly in control tissues. In contrast, hypoxic tissues displayed a greatly reduced number of granules in extracellular sites and an increase in the amount of precipitate in intracellular sites. In pulmonary arterial smooth muscle cells from hypoxic rats most of the precipitate was associated with the caveolae intracellulares, while in corresponding cells from hypoxic swine the majority of the pyroantimonate granules were localized to the sarcoplasmic reticulum. Hypoxia may produce pulmonary hypertension by interfering with the ability of the arterial smooth muscle cells to maintain transmembrane ionic gradients, thus producing an effective increase in cytoplasmic calcium levels. The increased calcium may then activate the contractile apparatus to produce a sustained vasoconstriction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-29
    Description: Gorgonum Chaos is part of the Eridania paleolake in Terra Sirenum and displays a number of prominent light‐toned morphological features that bear a record of the regional climatic conditions throughout most of Martian history. Based on an intergrated analysis of orbital data, we mapped a 1,500 km2 area in the southeast of Gorgonum Chaos. Morphologic, spectroscopic, and stratigraphic analyses were used to determine age and composition of the main geological units in the area. We identified four major geological units with decreasing content of hydrated minerals from the oldest to the youngest units, which were completely free of hydrated minerals. In the study area, phyllosilicate‐rich Noachian units compose the majority of the basin floor. Deposits enriched with evaporites were formed around the Noachian/Hesperian transition and erosion created prominent inverted morphologies. Loess‐like material without significant amounts of hydrated minerals was deposited until the late Hesperian. The youngest unit is an Amazonian layer free of hydrated minerals that originated from volcanic activities. This succession of minerals reflects the transition from more humid climatic conditions with the ability to sustain liquid water on the planet's surface during the Noachian to the hyper‐arid Amazonian environment we observe currently on Mars.
    Description: Plain Language Summary: Gorgonum Chaos is part of the Eridania basin, which is a former lake system located at the southern hemisphere of Mars. The landforms observed in this area and their variable brightness suggest dramatically changing climatic conditions during the history of Mars. In an area of 1,500 km2 in size, we analyzed different landforms, their spectral characteristics, and their temporal sequences to determine the age and composition of the geological units. We found four major geologic units whose content of hydrated minerals decreased dramatically from oldest to youngest. The oldest unit with a high content of clay minerals is about 3.7 billion years old and formed the former lake bottom. This is followed by a younger unit with a mineral composition that indicates desiccation of the lake and erosion by wind. These, in turn, were largely covered by materials deposited by wind, which show very little evidence of liquid water. The last and youngest unit is volcanic in origin and completely devoid of minerals indicative of water. This succession of minerals reflects the evolution of the Martian surface, which was capable to sustain liquid water in the early stages of the planet and lost this ability during a drastic climate change.
    Description: Key Points: We produced a geological map of southeastern Gorgonum Chaos. We find a succession from phyllosilicates to olivine in aeolian deposits. The presence of water decreases over time.
    Keywords: ddc:523
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1975-03-01
    Print ISSN: 0302-766X
    Electronic ISSN: 1432-0878
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-01
    Description: Environmental Science & Technology DOI: 10.1021/es3009776
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-01
    Description: Aims. The tensile strength of granular matter is of great importance to our understanding of the evolution of comets and to our attempts to reproduce processes on cometary surfaces in laboratory experiments. In this work, we investigate the tensile strength of three different materials and their mixtures, which can be used as cometary analog materials in the laboratory. Methods. We used two types of siliceous dusts and granular water ice whose polydisperse particles were either angular or spherical. Our samples were cooled to below 150 K to better simulate the conditions of a cometary surface and to avoid thermal alteration of the material. We used the Brazilian disk test method to exert stress on the cooled samples and determine the tensile strength at the moment the samples broke. Results. We find that the tensile strength of two component mixtures is strongly dominated by the component with the higher tensile strength. The materials made of mostly angular dust particles have a lower filling fraction, but a higher tensile strength compared to materials made of spherical particles. Furthermore, the tensile strength of the cooled components is substantially lower than the tensile strength of the same components at room temperature. This implies that the surface energy of the investigated materials at low temperatures is significantly lower than previously assumed.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-01
    Print ISSN: 2169-9097
    Electronic ISSN: 2169-9100
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-01
    Description: Aims. The morphology of cometary nuclei is the result of an ongoing evolution and can provide valuable information to constrain the composition of comets. In our laboratory experiments we investigated the morphological evolution of comet analog materials, which consist of volatile, dust, and organic components. The laboratory results are aimed to help understand the evolution of cometary surfaces. Methods. We used spherical particles of fly ash and mixtures of ice, glycine, and sodium acetate as analog materials in different mass ratios to reproduce observed cometary morphologies. The cohesive and gravitational properties in the laboratory are scaled to cometary conditions to draw meaningful conclusions from the experimental results. The samples were placed in a vacuum sublimation chamber, cooled down to below 150 K, and were insolated with an external light source. To analyze the morphology of the samples, a camera was used to monitor the alterations of the surface. Results. Organic components in volatile-rich samples can have a distinct adhesive effect after the volatiles sublimate. During the sublimation process the sample volume decreases and fractures form on the sample surface. Due to the stability of the remaining volatile-depleted material, significant cliff collapses or ejected particles were not observed in the laboratory.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...