ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1994-12-01
    Print ISSN: 1351-0754
    Electronic ISSN: 1365-2389
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of soil science 45 (1994), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Soil solution was obtained from potted rhizosphere or non-rhizosphere soils by water displacement or soil centrifugation. The pH of the displaced solutions was lower than that of bulk soils when solutions were obtained from non-rhizosphere soil, although it increased as plants grew. This increase probably reflected true changes in rhizosphere pH, generated by the uptake by plants of N03-N. In contrast, the pH of soil centrifugates was usually close to that of the bulk soils, implying that buffering by colloids had occurred during sampling. Concentrations of elements in solutions from non-rhizosphere soil were similar for both methods when soils were incubated at ambient pCO2. However, when non-rhizosphere soils were incubated at elevated pCO2, displacement solutions had lower pH values, and much larger concentrations of elements, compared to soil centrifugates.Comparison of mass flow of elements versus actual plant uptake showed that Ca and Mg accumulated, while K, Zn and Cd were depleted from the rhizosphere. Displacement solutions showed this accumulation or depletion of the elements more clearly than soil centrifugates. These differences were attributed to the fact that, at constant soil moisture, the rhizosphere developed mainly in larger pores, which were sampled by displacement. With centrifugation, a mixture of pore sizes was sampled, so that rhizosphere solution was only obtained when all of the soil had become rhizosphere.Soil centrifugates obtained after 22 days of growth also contained higher concentrations of organic carbon than displacement solutions, indicating contamination due to the disruption of roots and/or micro-organisms. We conclude that water displacement is suitable for sampling solution from light to medium textured rhizosphere or non-rhizosphere soils and that soil centrifugation is only of limited suitability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: bioavailability ; heavy metals ; metal speciation ; metal uptake ; radish ; rhizosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In an experiment using ten heavy metal-contaminated soils from six European countries, soil solution was sampled by water displacement before and after the growth of radish. Concentrations of Cd, Zn and other elements in solution (K, Ca, Mg, Mn) generally decreased during plant growth, probably because of uptake by plants and the subsequent redistribution of ions onto soil exchange sites at lower ionic strength. Speciation analysis by a resin exchange method showed that most Cd and Zn in non-rhizosphere solutions was present as Cd2+ and Zn2+, respectively. The proportion of free ions was slightly lower in rhizosphere solutions, mainly due to an increase in dissolved organic carbon during plant growth. Solution pH increased during plant growth, although the bulk soil pH generally remained constant. Cd concentrations in leaves and tubers were more closely correlated with their total or free ionic concentrations in rhizosphere solutions (adjusted R2 ≥ 0.90) than with their concentrations in soils (adj. R2 ≥ 0.79). Cd concentrations in non-rhizosphere solutions were only poorly correlated with Cd concentrations in leaves and tubers. In contrast to Cd, there were no soil parameters that individually predicted Zn concentrations in leaves and tubers closely. However, multiple correlation analysis (including Zn concentrations in rhizosphere solutions and in bulk soils) closely predicted Zn concentrations in leaves and tubers (adj. R2 = 0.85 and 0.70, respectively). This suggests that the great variability among soils in the solubility of Zn affected the rate of release of Zn into solution, and thus Zn uptake. There was no such effect for Cd, for which solubility varied much less. Furthermore, the plants may have partly controlled Zn uptake, as they took up relatively less at high solution concentrations of Zn. Free ionic concentrations in soil solution did not predict concentrations of Cd or Zn in plants better than their total concentrations in solution. This suggests that with these soils, analysis of Cd and Zn speciation is of little practical importance when their bioavailability is assessed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: Biosolids ; Cadmium ; Pollution ; Rhizosphere ; Soil solution ; Zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Uptake of metals by plants growing in sewage sludge-amended soils frequently exhibits a plateau response at high sludge loading rates associated with high total concentrations of metals in the soil. This type of response has generally been attributed to attenuation of metal bioavailability by increased sorption sites provided by the sludge constituents at the high sludge loading rates. We grew Raphanus sativus L. in a soil historically amended with sewage sludge at different rates and examined concentrations of Cd and Zn in the plants and in corresponding rhizosphere soil solution. Metal concentrations in the plants displayed a plateau response. However, concentrations of total or free metals in the soil solution did not display a similar plateau response, therefore the pre-requisite for determining that metal uptake by plants was limited by sludge chemistry was not met. It was concluded that plant physiological factors were responsible for the plateau in plant metal concentrations observed in this study. Examination of data by other authors suggests that a plateau response due to plant physiological factors has routinely been misinterpreted as being the result of only attenuation by sludge chemistry. The serious implications of an incorrect interpretation of the factors underlying a plateau response are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-2932
    Keywords: cadmium ; contaminated soils ; leaching ; soil extracts ; solute species ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1 – 7.8) and concentrations of cadmium (0.2 – 17 mg Cd kg-1) and zinc (36 – 1300 mg Zn kg-1). The soil waters contained total concentrations of 0.5 to 17 µg Cd L-1 and 9 to 3600 µg Zn L-1, which were dominated by free metal ions as measured by an ion exchange-resin method. Annual leaching outflows were estimated from soil water concentrations to be 0.5 – 17 g Cd ha-1 y-1 and 9 – 3600 g Zn ha-1 y-1 per 100 mm of net percolation, corresponding to 0.1% per year of the total soil content of cadmium and zinc. The measured soil water concentrations of cadmium and zinc did not correlate linearly with the corresponding soil concentrations but correlated fairly well with concentrations measured in Ca(NO3)2 extracts of the soils and with soil water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...