ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-06-21
    Print ISSN: 0167-6369
    Electronic ISSN: 1573-2959
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-23
    Print ISSN: 0920-4741
    Electronic ISSN: 1573-1650
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-12
    Description: The effectiveness of population policy in reducing the combined impacts of population change and climate change on water resources is explored. One no-policy scenario and two scenarios with population policy assumptions are employed in combination with water availability under the SRES scenarios A1b, B1 and A2 for the impact analysis. The population data used are from the World Bank. The river discharges per grid of horizontal resolution 0.5° are obtained from the Total Runoff Integrating Pathways (TRIP) of the University of Tokyo, Japan. Unlike the population scenarios utilized in the SRES emission scenarios and the newest representative concentration pathways, the scenarios employed in this research are based, even after 2050, on country-level rather than regional-level growth assumptions. Our analysis implies that the heterogeneous pattern of population changes across the world is the dominant driver of water stress, irrespective of future greenhouse gas emissions, with highest impacts occurring in the already water-stressed low latitudes. In 2100, Africa, Middle East and parts of Asia are under extreme water stress under all scenarios. The sensitivity analysis reveals that a small reduction in populations over the region could relieve a large number of people from high water stress, while a further increase in population from the assumed levels (SC1) might not increase the number of people under high water stress considerably. Most of the population increase towards 2100 occurs in the already water-stressed lower latitudes. Therefore, population reduction policies are recommended for this region as a method of adaptation to the future water stress conditions. Population reduction policies will facilitate more control over their future development pathways, even if these countries were not able to contribute significantly to greenhouse gas (GHG) emission cuts due to economic constraints. However, for the European region, the population living in water-stressed regions is almost 20 times lower than that in the lower latitudes. For countries with high population momentum, the population policy scenario with fertility-reduction assumptions gained a maximum of 6.1 times the water availability in Niger and 5.3 times that in Uganda compared with the no-policy scenario. Most of these countries are in sub-Saharan Africa. These countries represent 24.5% of the global population in the no-policy scenario, and the scenario with fertility-reduction assumptions reduces it to 8.7% by 2100. This scenario is also effective in reducing the area under extreme water stress in these countries. However, the policy scenario with assumptions of population stabilization at the replacement fertility rate increases the water stress in high-latitude countries. Nevertheless, the impact is low due to the high per capita water availability in the region. This research is expected to widen the understanding of the combined impacts of climate change in the future and of the strategies needed to enhance the space for adaptation.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-08-03
    Description: The effectiveness of population policy scenarios in reducing the combined impacts of population change and climate change on water resources is explored. One no-policy scenario and two scenarios with population policy assumptions are employed in combination with water availability under the SRES scenarios A1b, B1 and A2 for the impact analysis. The population data used are from the World Bank. The river discharges per grid of horizontal resolution 0.5° are obtained from the Total Runoff Integrating Pathways (TRIP) of the University of Tokyo, Japan. Unlike the population scenarios utilized in the SRES emission scenarios and the newest Representative Concentration Pathways, the scenarios employed in this research are based, even after 2050, on country-level rather than regional growth assumptions. Our analysis implies that in combination with a more heterogeneous pattern of population changes across the world, a more convergent, environmentally friendly emissions scenario, such as B1, can result in a high-impact climate scenario, similar to A2, for the already water-stressed low latitudes. However, the effect of population change supersedes the changes in the climate scenarios. In 2100, Africa, Middle-East and parts of Asia are in extreme water-stress under all scenarios. For countries with high population momentum, the population policy scenario with fertility-reduction assumptions gained a maximum of 6.1 times the water availability in Niger and 5.3 times that in Uganda compared with the no-policy scenario. Most of these countries are in Sub-Saharan Africa. These countries represent 24.5% of the global population in the no-policy scenario and the scenario with fertility- reduction assumptions reduces it to 8.7% by 2100. This scenario is also effective at reducing the area under extreme water stress in these countries. However, the policy scenario with assumptions of population stabilization at the replacement fertility rate increases the water stress in high-latitude countries. Nevertheless, the impact is low due to the high per capita water availability in the region. This research is expected to widen the understanding of the combined impacts of climate change in the future and of the strategies needed to enhance the space for adaptation.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...