ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1977-07-01
    Print ISSN: 0038-0741
    Electronic ISSN: 1573-9279
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-01
    Description: The new method for the reconstruction of internal gravity wave (IGW) parameters from a single vertical temperature profile measurement in the Earth atmosphere has been developed. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, then analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitude thresholds of the temperature wave field and on the linear IGW saturation theory in which amplitude thresholds are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal gravity wave reaches the shear instability limit, energy is assumed to be dissipated in such a way that the amplitude is maintained at the instability limit as the wave propagates upwards. In order to approbate the method we have used in situ data of simultaneous balloon high-resolution measurements of the temperature and wind velocity in the Earth stratosphere (France) where a long-period inertia-gravity wave has been detected. Using the temperature data only, we have reconstructed all the measured wave parameters with uncertainties not larger than 30%. An application of the method to the radio occultation data has given the possibility to identify the IGWs in the Earth stratosphere and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal perturbations of the wind velocity, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy, vertical fluxes of the wave energy and horizontal momentum. The obtained results of internal wave studies in the Earth stratosphere deduced from the COSMIC and CHAMP GPS occultation temperature profiles have been presented and discussed.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-01
    Description: Conditions for communication, navigation, and remote sensing in the ionosphere and atmosphere depend strongly on the ionospheric impact on the radio waves propagation. By use of the CHAllenge Minisatellite Payload (CHAMP) radio occultation (RO) data a description of different types of the ionospheric contributions to the RO signals at the altitudes 30–90 km of the RO ray perigee is introduced and compared with results of measurements obtained earlier in the communication link satellite-to-Earth at frequency 1.5415 GHz. An analytical model is introduced for description of the radio waves propagation in a stratified medium consisting of sectors having the spherically symmetric distributions of refractivity. Model presents analytical expressions for the phase path and refractive attenuation of radio waves. Model is applied for analysis of the radio waves propagation effects along a prolonged path including the atmosphere and two parts of the ionosphere. Model explains significant amplitude and phase variations at the altitudes 30–90 km of the RO ray perigee as connected with influence of the inclined ionospheric layers. An innovative eikonal acceleration technique is described and applied for the identification of the inclined ionospheric layers contributions and their location. Possibility to separate the influence of layered structures from contributions of irregularities and turbulence is analyzed.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-14
    Description: A new method for the reconstruction of internal gravity wave (IGW) parameters from a single vertical temperature profile measurement in the Earth's atmosphere has been developed. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, then analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitude thresholds of the temperature wave field and on the linear IGW saturation theory in which amplitude thresholds are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal gravity wave reaches the shear instability limit, energy is assumed to be dissipated in such a way that the amplitude is maintained at the instability limit as the wave propagates upwards. In order to approbate the method we have used data of simultaneous high-resolution balloon measurements of the temperature and wind velocity in the Earth's stratosphere over France where a long-period inertia-gravity wave has been detected. Using the radiosonde temperature data only, we have reconstructed all wave parameters, which were determined by radiosondes, with relative deviations not larger than 30%. An application of the method to the radio occultation (RO) data has given the possibility to identify the IGWs in the Earth's stratosphere and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal perturbations of the wind velocity, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy, vertical fluxes of the wave energy and horizontal momentum. The obtained results of internal wave studies in the Earth's stratosphere deduced from the COSMIC and CHAMP GPS occultation temperature profiles are presented and discussed.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-17
    Description: A new formulation of the previously introduced principle of locality is presented. The principle can be applied for modernization of the radio occultation (RO) remote sensing of the atmospheres and ionospheres of the Earth and other planets. The principle states that significant contributions to variations of the intensity and phase of the radio waves passing through a layered medium are connected with influence of the vicinities of tangential points where the refractivity gradient is perpendicular to the radio ray trajectory. The RO method assumes spherical symmetry of the investigated medium. In this case, if location of a tangent point relative to the spherical symmetry centre is known, the time derivatives of the RO signal phase and Doppler frequency variations can be recalculated into the refractive attenuation. Several important findings are consequences of the locality principle: (i) if position of the centre of symmetry is known, the total absorption along the ray path can be determined at a single frequency; (ii) in the case of low absorption the height, displacement from the radio ray perigee, and tilt of the inclined ionospheric (atmospheric) layers can be evaluated; (iii) the contributions of the layered and irregular structures in the RO signal can be separated and parameters of layers and turbulence can be measured at a single frequency using joint analysis of the intensity and phase variations. Specially for the Earth's troposphere, the altitude distributions of the weak total absorption (about of 1–4 db) of the radio waves at GPS frequencies corresponding to possible influence of the oxygen, water vapour, and hydrometeors can be measured with accuracy of about 0.1 db at a single frequency. In accordance with the locality principle, a new index of ionospheric activity is introduced. This index is measured from the phase variations of radio waves passing through the ionosphere. Its high correlation with the S4 scintillation index is established. This correlation indicates the significant influence of locally spherical symmetric ionospheric layers on variations of the phase and intensity of the RO signal passing through transionospheric communication links. Obtained results expand applicable domain of the RO method as a powerful remote sensing technique for geophysical and meteorological research.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-01-04
    Description: By using the CHAllenge Minisatellite Payload (CHAMP) radio occultation (RO) data, a description of different types of the ionospheric impacts on the RO signals at the altitudes 30–90 km of the RO ray perigee is given and compared with the results of measurements obtained earlier in the satellite-to-Earth communication link at frequency 1.5415 GHz. An analytical model is introduced for describing propagation of radio waves in a stratified medium consisting of sectors with spherically symmetric refractivity distribution. This model gives analytical expressions for the phase, bending angle, and refractive attenuation of radio waves and is applied to the analysis of radio wave propagation phenomena along an extended path including the atmosphere and two parts of the ionosphere. The model explains significant amplitude and phase variations at altitudes 30–90 km of the RO ray perigee and attributes them to inclined ionospheric layers. Based on this analytical model, an innovative technique is introduced to locate layers in the atmosphere and ionosphere. A necessary and sufficient criterion is obtained for a layer to be located at the RO ray perigee. This criterion gives both qualitative and quantitative estimation of the displacement of an ionospheric and/or atmospheric layer from the RO ray perigee. This is important, in particular, for determining the location of wind shears and directions of the internal wave propagation in the lower ionosphere, and, possibly, in the atmosphere.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-20
    Description: A new formulation of previously introduced principle of locality is presented. The principle can be applied for modernization of the radio occultation (RO) remote sensing of the atmospheres and ionospheres of the Earth and planets. The principle states that significant contributions to variations of the amplitude and phase of the radio waves passing through a layered medium are connected with influence of the vicinities of tangential points where the refractivity gradient is perpendicular to the radio ray trajectory. The RO method assumes spherical symmetry of the investigated medium. In this case if location of a tangent point relative to the spherical symmetry center is known, the derivatives on time of the RO signal phase and Doppler frequency variations can be recalculated into the refractive attenuation. Several important findings are consequences of the locality principle: (i) if position of the center of symmetry is known, the total absorption along the ray path can be determined at a single frequency, (ii) in the case of low absorption the height, displacement from the radio ray perigee, and tilt of the inclined ionospheric (atmospheric) layers can be evaluated, (iii) the contributions of the layered and irregular structures in the RO signal can be separated and parameters of layers and turbulence can be measured at a single frequency using joint analysis of the amplitude and phase variations. Specially for the Earth's troposphere, the altitude distributions of the weak total absorption (about of 1–4 db) of the radio waves at GPS frequencies corresponding to possible influence of the oxygen and water vapor can be measured with accuracy of about 0.1 db at a single frequency. According with the locality principle, a new index of ionospheric activity is introduced. This index is measured from the phase variations of radio waves passing through the ionosphere. Its high correlation with S4 scintillation index is established. This correlation indicates the significant influence of locally spherical symmetric ionospheric layers on variations of the phase and amplitude of the RO signal passing through transionospheric communication links. Obtained results expand the applicable domain of the RO method as a powerful remote sensing technique for geophysical and meteorological research.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of experimental biology and medicine 83 (1977), S. 111-113 
    ISSN: 1573-8221
    Keywords: planimetric grid ; stereology ; structural components
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract A type of grid for plamimetric investigations of macroscopic and microscopic objects with equidistant nodal points of “zero” thickness is suggested. The method of performing the stereological investigation is described. Formulas are suggested for determining the necessary number of counts of points in order to enable representative data to be obtained for the quota of a structural component in the specimen studied with 95% confidence limits. Formulas for calculating the bulk density of a structural formation in a macroscopic and microscopic object with calculation of statistical indices are given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    International applied mechanics 7 (1971), S. 90-93 
    ISSN: 1573-8582
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    International applied mechanics 7 (1971), S. 332-334 
    ISSN: 1573-8582
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...