ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The inductive pulsed plasma thruster (IPPT) is an electromagnetic plasma accelerator that has been identified in NASA roadmaps as an enabling propulsion technology for some niche low-power missions and for high-power in-space propulsion needs. The IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. Thrusters of this type possess many demonstrated and potential benefits that make them worthy of continued investigation. The electrodeless nature of these thrusters eliminates the lifetime and contamination issues associated with electrode erosion in conventional electric thrusters. Also, a wider variety of propellants are accessible when compatibility with metallic electrodes in no longer an issue. IPPTs have been successfully operated using propellants like ammonia, hydrazine, and CO2, and there is no fundamental reason why they would not operate on other in situ propellants like H2O. It is well-known that pulsed accelerators can maintain constant specific impulse (I(sub sp)) and thrust efficiency ((sub t)) over a wide range of input power levels by adjusting the pulse rate to hold the discharge energy per pulse constant. It has also been demonstrated that an inductive pulsed plasma thruster can operate in a regime where (sub t) is relatively constant over a wide range of I(sub sp) values (3000-8000 s). Finally, thrusters in this class have operated in single-pulse mode at high energy per pulse, and by increasing the pulse rate they offer the potential to process very high levels of power using a single thruster. There has been significant previous research on IPPTs designed around a planar-coil (flat-plate) geometry. The most notable of these was the Pulsed Inductive Thruster (PIT), with the PIT MkV presently representing the state of- the-art in pulsed high-power IPPT technological development. In this paper, we focus on two planar-geometry devices that operate at significantly different power levels. Most work performed at NASA-Marshall Space Flight Center (MSFC) has, to date, focused on lower power thruster operation ( 10s to 100s of J/pulse, up to 2-2.5 kW average power throughput) and previously described in Refs. [5,6]. The most recent work aimed to assemble a device that could be tested in cyclic mode on a thrust-stand, and which could augment the existing data set for IPPTs. In addition, the thruster was designed to serve as a test-bed for solid state switching circuitry and pulsed gas valves, with the modular design of the device allowing for variation in or upgrades to test configuration. Recently, MSFC obtained on loan from the Georgia Institute of Technology (Atlanta, GA) the PIT MkVI, successor to the PIT MkV. The MkV and MkVI are similar in design with much of the hardware from the former, specifically the capacitors and spark-gap switches, being reused in the latter. The coil is simliar in geometry but has bent copper rods used in the latest iteration in place of the Litz wire windings found in the MkV. The MkVI master switch for the spark gaps is located in the vacuum chamber contained within a sealed, pressurized vessel fastened to the back of the thruster. This is different from the MkV where many capacitor charging lines and spark gap-triggering delay lines ran to the thruster from a master trigger located outside the vacuum chamber. The MkVI was damaged during testing soon after its fabrication was completed. The thruster arrived at MSFC still-damaged and mostly disassembled into many individual pieces. The device has been repaired, with a few additional design changes implemented after discussions with the late Prof. Lovberg regarding the initial testing results and issues encountered.
    Keywords: Plasma Physics
    Type: M18-6478 , AIAA Propulsion and Energy Forum; 9-11 Jil. 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The inductive pulsed plasma thruster (IPPT) is an electromagnetic plasma accelerator that has been identified in NASA roadmaps as an enabling propulsion technology for some niche low-power missions and for high-power in-space propulsion needs. The IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. Thrusters of this type possess many demonstrated and potential benefits that make them worthy of continued investigation. The electrodeless nature of these thrusters eliminates the lifetime and contamination issues associated with electrode erosion in conventional electric thrusters. Also, a wider variety of propellants are accessible when compatibility with metallic electrodes in no longer an issue. IPPTs have been successfully operated using propellants like ammonia, hydrazine, and CO2, and there is no fundamental reason why they would not operate on other in situ propellants like H2O. It is well-known that pulsed accelerators can maintain constant specific impulse (I(sub sp)) and thrust efficiency (eta(sub t)) over a wide range of input power levels by adjusting the pulse rate to hold the discharge energy per pulse constant. It has also been demonstrated that an inductive pulsed plasma thruster can operate in a regime where eta(sub t) is relatively constant over a wide range of I(sub sp) values (3000-8000 s). Finally, thrusters in this class have operated in single-pulse mode at high energy per pulse, and by increasing the pulse rate they offer the potential to process very high levels of power using a single thruster. There has been significant previous research on IPPTs designed around a planar-coil (flat-plate) geometry. The most notable of these was the Pulsed Inductive Thruster (PIT), with the PIT MkV presently representing the state-of- the-art in pulsed high-power IPPT technological development. In this paper, we focus on two planar-geometry devices that operate at significantly different power levels. Most work performed at NASA-Marshall Space Flight Center (MSFC) has, to date, focused on lower power thruster operation (approx. = 10s to 100s of J/pulse, up to 2-2.5 kW average power throughput) and previously described. The most recent work aimed to assemble a device that could be tested in cyclic mode on a thrust-stand, and which could augment the existing data set for IPPTs. In addition, the thruster was designed to serve as a test-bed for solid state switching circuitry and pulsed gas valves, with the modular design of the device allowing for variation in or upgrades to test configuration. Recently, MSFC obtained on loan from the Georgia Institute of Technology (Atlanta, GA) the PIT MkVI, successor to the PIT MkV. The MkV and MkVI are similar in design with much of the hardware from the former, specifically the capacitors and spark-gap switches, being reused in the latter. The coil is similar in geometry but has bent copper rods used in the latest iteration in place of the Litz wire windings found in the MkV. The MkVI master switch for the spark gaps is located in the vacuum chamber contained within a sealed, pressurized vessel fastened to the back of the thruster. This is different from the MkV where many capacitor charging lines and spark gap-triggering delay lines ran to the thruster from a master trigger located outside the vacuum chamber. The MkVI was damaged during testing soon after its fabrication was completed. The thruster arrived at MSFC still-damaged and mostly disassembled into many individual pieces. The device has been repaired, with a few additional design changes implemented after discussions with the late Prof. Lovberg regarding the initial testing results and issues encountered. In the present work, we present results from testing of both the small IPPT and the larger MkVI thruster. The smaller device (Fig. 1) is tested on a thrust stand on multiple gases to demonstrate its capability to operate in a repetition-rate mode and serve as a IPPT technology-development testbed. The larger MkVI (Fig. 2) is operated for the first time in its newly reconstituted state, demonstrating full-power pulsed operation and, for the first time, repetition-rate operation of a high-power IPPT. The additional upgrades required for synchronous operation of all the pulsed systems in single-pulse and repetition-rate mode are described in detail.
    Keywords: Spacecraft Propulsion and Power
    Type: M17-5796 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: PULSED plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas. The current in such discharges will ionize the gas and produce a strong magnetic field, which interacts with the flowing current to accelerate the plasma through the Lorentz body force. For the present work, two plasma accelerator types employing this general scheme are of interest: the gas-fed pulsed plasma thruster (PPT) 1 and the quasi-steady magnetoplasmadynamic (MPD) accelerator. 2 The gas-fed pulsed plasma accelerator is generally understood as a completely transient device discharging in 1-10 s. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j B body force, entraining and accelerating propellant it encounters. This process is sometimes referred to in literature as 'snowplowing' the propellant or accelerating the gas in a detonation-mode because the current sheet representation approximates that of a strong detonation shockwave propagating through the gas. For these devices, acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new 'crowbar' discharge at the breech and depriving the initial sheet of additional acceleration. In general, PPTs typically claim thrust efficiencies (ratio of jet kinetic energy to input electrical energy) registering in the teens or lower. 3 In the quasi-steady MPD accelerator, the pulse is lengthened to 1 ms or longer and maintained at an approximately constant level during discharge through the use of a pulse-forming network (PFN) of capacitors. After an initial transient discharge, which is typically short relative to the overall discharge period, the plasma assumes a relatively steady-state configuration, known as 'quasi-steady' MPD operation. 2 In this state, ionized gas flows through a stationary current channel in a manner that is sometimes referred to as deflagration-mode operation owing to the similarities to deflagration waves in gases. The plasma experiences electromagnetic acceleration as the plasma flows through the current channel towards the exit of the device. Quasi-steady MPD thrusters claim efficiencies up to 50% for certain propellants.4 There has been significant and sustained research over several decades on both gas-fed PPTs and quasi-steady MPD thrusters, however there have been pulsed thrusters that do not appear to exactly fit either classification, instead possessing a mixture of operational qualities characteristic of both thruster variants. The Coaxial High ENerGy (CHENG) thruster by Cheng, et al.5 operated on the short 10 s timescales characteristic of PPTs, but claimed the high thrust densities, high efficiencies, and low electrode erosion rates that are more consistent with the MPD/deflagration mode of plasma acceleration. Gas-fed PPT research by Ziemer, et al. 3, 6 identified two separate regimes of performance in those thrusters. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency as a function of mass bit, while the second regime at very low mass bits (termed Mode II) exhibited an increase in efficiency with decreasing mass bit. Work by Poehlmann et al.7 and by Sitaraman and Raja8 sought to understand the performance of the CHENG thruster and the Mode I/Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes of plasma acceleration representing two distinct sets of solutions to the relevant conservation laws. In these works, it was proposed that the values of the various controllable parameters determined whether the accelerator would operate in detonation or deflagration mode. Our hypothesized view of the acceleration process in the CHENG thruster and in PPTs experiencing a transition from Mode I to Mode II is inspired by observations of the transition from the PPT mode of operation to the quasi-steady MPD mode. Specifically, the quasi-steady MPD was discovered by driving a PPT to extended pulse lengths. Above a certain pulse length threshold the transient plasma current sheet transitions into a stable plasma acceleration mode that 'replicates in every observable detail steady flow self-field magnetoplasmadynamic acceleration.' 9 In the present work, instead of treating the accelerator as if it were only operating in a single mode during a pulse, we consider the initial stage of the discharge in all cases as a current sheet forming at the breach of the accelerator and moving towards the exit as a detonation wave. If the current sheet reaches the exit of the accelerator before the discharge is completed, the view of the acceleration mode transitions to the deflagration mode-type found in quasi-steady MPD thrusters. In previous work10 we presented a modeling framework that first captured the time-evolution of the current sheet (detonation) mode of the thruster and then transitioned into the quasi-steady MPD (deflagration) mode of plasma acceleration. In the present work, variations of the controllable parameters - specifically the pulsed circuit properties, the amount of mass injected into the thruster, and the relative timing between the initial gas injection and the initiation of the plasma current sheet - will be used to explore the thruster performance. A range of parameters are explored to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.
    Keywords: Plasma Physics
    Type: M18-6479 , AIAA/SAE/ASEE Joint Propulsion Conference; 9-11 Jul. 208; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-02
    Description: Gas-fed electromagnetic pulsed plasma accelerators discharge electrical energy into a gas to ionize and electromagnetically accelerate propellant in the domain. Efforts to model pulsed accelerators have either assumed that the discharge is short and completely transient, accelerating the gas by entraining it in a moving current sheet, or that the discharge is relatively long, establishing a stable quasi-steady current distribution pattern that accelerates a plasma flowing through it. There have been pulsed plasma accelerator tests that appear to fit somewhere between these two bounds, exhibiting some properties that are associated with the purely transient devices while also showing others that are associated with quasi-steady-state plasma acceleration. A model is presented based upon the premise that all pulsed plasma accelerators first form an accelerating current sheet (detonation mode accelerator). Depending upon the pulse length and the gas conditions in the dis- charge channel, the plasma sheet may reach the end of the accelerator before the discharge has completed a full half-cycle, wherein the proposed model transitions to a quasi-steady description of the acceleration process (deflagration mode accelerator). A review of the entire model is presented, highlighting improvements and upgrades implemented to aid in the stability of the numerical scheme used to model the gas flow in the channel and an improved treatment of current sheet mass shedding, which adds gas to the wake of the sheet. The assumptions employed to model the transition from detonation to deflagration mode are presented and used to generate solutions to the governing equations. The modeling of the deflagration-mode under the present assumptions results in very low deflagration impulse bits relative to those obtained at the end of the detonation mode, implying that the present assumptions and modeling of the deflagration mode may not represent a fruitful approach.
    Keywords: Plasma Physics
    Type: M19-7645-1 , International Electric Propulsion Conference ; Sep 16, 2019 - Sep 20, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.
    Keywords: Plasma Physics; Spacecraft Propulsion and Power
    Type: M17-6145 , AIAA 2018 SciTech Forum; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Gas-fed electromagnetic pulsed plasma accelerators operate by discharging electrical energy into a gas, subsequently ionizing and electromagnetically accelerating propellant. Many efforts to model pulsed accelerators have assumed that the discharge is either short and completely transient, accelerating the gas like a shock by entraining it in a moving current sheet, or that the discharge is relatively long, establishing a stable quasi-steady current distribution through which plasma flows and is accelerated. This idealization encounters problems when thrusters possess some qualities associated with both short and long-pulse-length thrusters. To capture all possible scenarios, a model is presented based upon the idea that all pulsed plasma accelerators first form an accelerating current sheet (detonation mode accelerator) and then, depending upon the pulse length and the manner in which the plasma reaches the thruster exit, it can transition to the quasi-steady acceleration configuration (deflagration mode accelerator). In the present work the detonation mode is investigated, varying controllable parameters to determine their effects on the plasma acceleration process. The primary driver affecting current sheet acceleration is the amount of gas that the plasma encounters and entrains as it moves towards the thruster exit. The amount of neutral gas the plasma entrains affects the time it takes the plasma to reach the end of the accelerator and changes the corresponding electrical discharge parameters at the end of detonation mode acceleration.
    Keywords: Spacecraft Propulsion and Power
    Type: M18-6817 , AIAA Propulsion and Energy Forum 2018; Jul 09, 2018 - Jul 11, 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-02
    Description: Gas-fed electromagnetic pulsed plasma accelerators discharge electrical energy into a gas to ionize and electromagnetically accelerate propellant in the domain. Efforts to model pulsed accelerators have either assumed that the discharge is short and completely tran- sient, accelerating the gas by entraining it in a moving current sheet, or that the discharge is relatively long, establishing a stable quasi-steady current distribution pattern that accel- erates a plasma flowing through it. There have been pulsed plasma accelerator tests that appear to fit somewhere between these two bounds, exhibiting some properties that are associated with the purely transient devices while also showing others that are associated with quasi-steady-state plasma acceleration. A model is presented based upon the premise that all pulsed plasma accelerators first form an accelerating current sheet (detonation mode accelerator). Depending upon the pulse length and the gas conditions in the dis- charge channel, the plasma sheet may reach the end of the accelerator before the discharge has completed a full half-cycle, wherein the proposed model transitions to a quasi-steady description of the acceleration process (deflagration mode accelerator). A review of the entire model is presented, highlighting improvements and upgrades implemented to aid in the stability of the numerical scheme used to model the gas flow in the channel and an im- proved treatment of current sheet mass shedding, which adds gas to the wake of the sheet. The assumptions employed to model the transition from detonation to deflagration mode are presented and used to generate solutions to the governing equations. The modeling of the deflagration-mode under the present assumptions results in very low deflagration im- pulse bits relative to those obtained at the end of the detonation mode, implying that the present assumptions and modeling of the deflagration mode may not represent a fruitful approach.
    Keywords: Plasma Physics
    Type: IEPC-2019-A893 , M19-7645-2 , International Electric Propulsion Conference ; Sep 16, 2019 - Sep 20, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-01
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...