ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 66 (1962), S. 300-307 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 94 (1972), S. 1247-1249 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1972-02-01
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1980-03-01
    Description: The fluid is incompressible, inviscid and non-diffusive. It has a uniform Brunt-Väisälä frequency, N, and is of constant depth, D. A body or wing moves horizontally through the fluid at velocity U in a straight line, exerting a vertical force during a given time interval. The force is constant, or oscillatory with frequency. The vertical average of the strain rate in a thin surface layer is calculated for a network of points behind the body. The linearized analysis is first applied with tank walls, then modified for remote walls and a vertical force of long duration. For moderately high velocity and forcing frequency (U/ND = 5, /N 4-16) the recurring internal wave pattern just behind the body is well established in one cycle of the oscillatory force. A tank width one or two times the depth gives good agreement between tank and no-wall calculations for the chosen examples. For a stationary wing (U/ND = 0) in a cubic tank with forcing frequency one-half the natural frequency (/N =) the strain rates after one cycle are 103 times greater than for the moving wing case. After five cycles the magnitudes are twenty times larger than after one cycle. Presumably these large increases are due to the continuous and efficient feeding of energy into a small fluid volume which occurs for the stationary wing. No-wall calculations for many cycles give amplitudes roughly one-half those for five cycles in the tank, showing the effect of escaping energy. The relation of these developments to stationary phase analysis and preferred directions is discussed. The stipulation of a rigid body in fluctuating motion leads to a much more difficult analysis. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1971-10-01
    Description: The mathematical representation of acoustical sources in motion relative to the surrounding fluid is discussed. It is observed that several types of moving sources exist, and that it is sometimes necessary to choose the proper type. One of these sources currently appears to be more physically realistic than the others. © 1971, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1982-02-01
    Description: In studying the behaviour of a density-stratified shear flow difficulties are encountered at the ‘ critical’ level where wave velocity equals fluid velocity. Here a stratified shear layer of finite thickness is considered and a two-dimensional nonlinear steady-state problem is studied. It is assumed that blocking creates separate pockets of trapped fluid, each mixed to uniform density. These pockets are not in static equilibrium with the surrounding stratified fluid. They must be supported either by pressures dynamically developed in the curved flow along continuous streamlines outside the pockets or by centrifugal forces resulting from circulation within the pockets. The latter effect is considered only through evaluation of a crude ‘factor of importance’,FR, for the rotational effects and the pockets are assumed to be stagnant in the primary analysis. For small but finite disturbance amplitude FR approaches zero, indicating that no correction of the primary analysis is required. A limiting Richardson number of unity appears. Above this limit the primary analysis gives no solutions and apparently the separate pockets of stagnant fluid merge to form a continuous stagnant insulating layer. This behaviour of the critical level (as a barrier to communication) resembles earlier results from transient linearized investigations although the two analyses have little in common except the existence of a critical level separating two fluid regions. For moderate-to-large disturbance amplitudes the geometry of the flow pattern suggests Kelvin-Helmholtz billows. Rotational effects increase as the amplitude increases and may become significant at this stage. The primary analysis then becomes less accurate and cannot be used to exclude Kelvin-Helmholtz billows at Richardson numbers somewhat greater than unity. © 1982, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1978-08-01
    Description: Non-parallel shear flows of an inviscid, incompressible, density-stratified fluid are considered. The stability is studied in terms of the possibility of complete mixing within a horizontal layer of given thickness. It is assumed that the energy interchange between the mixed region and the external fluid can be neglected. It is also assumed that the required turbulent energy is greater than the energy needed to invert the region to be mixed. The term ‘stable’ as used here means that the kinetic energy released by making the velocity constant over the layer thickness is not sufficient to provide the required turbulent energy for that layer thickness. If each horizontal fluid plane has a translational velocity of the same magnitude and shear is produced by rotation of the velocity vector with increasing height, then ‘stability’ increases strongly with increasing layer thickness. © 1978, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1973-11-20
    Description: The internal waves produced by a moving body are generally longer in the direction of motion than the corresponding surface waves. This difference is accentuated when the density variation is slight and the body velocity is large in which case a very long towing tank may be required for the simulation of a steady-state condition. The following theoretical study of transient waves is intended as a step in relating test conditions and requisite towing-tank sizes. A source–sink pair travelling for a finite time is used to represent the restricted motion of a body in a tank. The approximate length and volume of the body are fixed, but its precise shape (somewhat irregular and slightly time dependent) is assumed to be of secondary importance and is not calculated here. The density-stratified fluid is assumed to have a constant Brunt–Väisälä frequency. A solution in the form of a triple sum over the tank eigenfunctions applies quite generally for the internal wave system (neglecting surface waves and the potential-flow-type solution near the body). Examples covering the large-scale structure of the flow field have been solved for two values of an approximate similarity parameter. The value of the similarity parameter indicates how closely steady-state conditions are approached. The first (larger) value chosen produces a well-defined quasi-steady state near the body with transient fluctuations of the order of ± 10%. The second (smaller) value gives a poorly defined quasisteady state with fluctuations of the order of ±50%. More elaborate studies varying the tank length, width and depth could be made by programming the calculations. The effect of a collapsing wake has not been considered here, but might possibly be treated by similar methods. © 1973, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-05-10
    Keywords: FACILITIES, RESEARCH, AND SUPPORT
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: The production of noise by turbulence in jets is an extremely complex problem. One aspect of that problem, the transmission of acoustic disturbances from the interior of the jet through the mean velocity profile and into the far field is studied. The jet (two-dimensional or circular cylindrical) is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the surrounding fluid and confined to a short length of the jet.
    Keywords: AIRCRAFT
    Type: NASA-CR-2390
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...