ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈span〉〈div〉ABSTRACT〈/div〉After conducting a successful GPR pilot study in a tectonically complex area of the Karst Thrust Edge, a follow-up study was carried out. In the pilot study, the geometry and spatial extent of the Socerb thrust-fault, which separates limestone above from flysch below, were investigated using a 50 MHz antenna in the Črnotiče quarry. After one part of the quarry was deepened and widened, new flysch outcrops were exposed and GPR profiling was made possible in areas where the thrust contact could not be reached before. By comparing the first GPR results with the locations of new flysch outcrops, we found it reached the surface almost exactly where we had predicted. In order to gain new information about the location of the thrust contact, nine new profiles were recorded. In this newly deepened area, the thrust contact runs close to the surface, therefore a 250 MHz antenna was used in addition to the 50 MHz antenna in order to ensure an adequate level of resolution. This combination of antennas provided the depth penetration of 34 m as well as resolution high enough to obtain accurate information from the shallowest parts. GPR profiles were used to create a 3D model of the thrust-fault plane, providing information about the spatial position and lateral undulations of the thrust contact. The results provided new data about the geometry of the Socerb thrust-fault and correlated well with existing borehole data. The results also showed the importance of using appropriate antenna frequencies as other features capable of becoming hazardous during excavation (air-filled and sediment-filled karst caves) could otherwise be misinterpreted or overlooked. The follow-up research not only provides new data important for understanding the tectonic setting of the area, but also information needed for calculating exploitable material quantities and for planning safe excavation processes.〈/span〉
    Print ISSN: 1083-1363
    Electronic ISSN: 1943-2658
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-24
    Description: The 12 April 1998 Mw = 5.6 Krn Mountains earthquake with a maximum intensity of VII–VIII on the EMS-98 scale caused extensive environmental effects in the Julian Alps. The application of intensity scales based mainly on damage to buildings was limited in the epicentral area, because it is a high mountain area and thus very sparsely populated. On the other hand, the effects on the natural environment were prominent and widespread. These facts and the introduction of a new Environmental Seismic Intensity scale (ESI 2007) motivated a research aimed to evaluate the applicability of ESI 2007 to this event. All environmental effects were described, classified and evaluated by a field survey, analysis of aerial images and analysis of macroseismic questionnaires. These effects include rockfalls, landslides, secondary ground cracks and hydrogeological effects. It was realized that only rockfalls (78 were registered) are widespread enough to be used for intensity assessment, together with the total size of affected area, which is around 180 km2. Rockfalls were classified into five categories according to their volume. The volumes of the two largest rockfalls were quantitatively assessed by comparison of Digital Elevation Models to be 15 × 106 m3 and 3 × 106 m3. Distribution of very large, large and medium size rockfalls has clearly defined an elliptical zone, elongated parallel to the strike of the seismogenic fault, for which the intensity VII–VIII was assessed. This isoseismal line was compared to the tentative EMS-98 isoseism derived from damage-related macroseismic data. The VII–VIII EMS-98 isoseism was defined by four points alone, but a similar elongated shape was obtained. This isoseism is larger than the corresponding ESI 2007 isoseism, but its size is strongly controlled by a single intensity point lying quite far from others, at the location where local amplification is likely. The ESI 2007 scale has proved to be an effective tool for intensity assessment in sparsely populated mountain regions not only for very strong, but for moderate earthquakes as well. This study has shown that the quantitative definition of rockfall size and frequency, which is diagnostic for each intensity, is not very precise in ESI 2007, but this is understandable since the rockfall size is related not only to the level of shaking, but also depends highly on the vulnerability of rocky slopes.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-14
    Description: The town of Kobarid is located in one of three areas with the highest seismic hazard in Slovenia. It was hit by several 1976–1977 Friuli sequence earthquakes and recently by the 1998 and 2004 Krn Mountains earthquakes which caused damage of intensity up to VII EMS-98 scale. The town is located in a small basin filled with heterogeneous glaciofluvial Quaternary sediments in which site effects due to soft sediments are expected. The existing microzonation which is based on surface geological data only is inadequate, and no borehole or geophysical data are available in the basin that would allow a modelling approach of site effects assessment. The microtremor horizontal-to-vertical spectral ratio (HVSR) method was therefore applied in order to assess the fundamental frequency of the sediments. Investigations were performed on a 100×100 m dense grid and 106 free-field measurements acquired. Clear HVSR peaks were obtained in the majority of the surveyed area. The eastern part of the basin is characterized by two well separated peaks which indicate distinct shallow and deep impedance contrasts. The iso-frequency map of sediments shows a distribution in a broad range of 1.8–22.2 Hz. The observed frequencies can be related to the total thickness of Quaternary sediments (sand, gravel) in the western part of the basin only. They are deposited over bedrock built of Cretaceous flysch. In the eastern part the obtained fundamental frequencies are influenced by the presence of a shallow conglomerate layer inside sandy gravel or lacustrine chalk. The extent of these layers was not known before. Microtremor measurements were also performed inside 19 characteristic buildings of various heights (from two to four stories), and longitudinal and transverse fundamental frequencies determined from amplitude spectra. A potential of soil-structure resonance was assessed by comparing building frequencies with the free-field sediments frequencies derived from the iso-frequency map. For two surveyed buildings a high danger of soil-structure resonance was assessed and for three buildings the danger was of medium level. The building resonant frequency of two- and three-story houses, which prevail in the area, spans the range 4–11 Hz, with an average value of 7.7 Hz. The danger of soil-structure resonance should be therefore sought in this frequency range. Since the majority of Kobarid area is characterized by lower (W part) or higher (E part) frequencies, the danger exist mainly in a relatively narrow transition zone.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-02-08
    Description: In this paper we examine the Coulomb (static) stress pattern following the two moderate magnitude earthquakes in NW Slovenia during 1998 and 2004. These earthquakes ruptured patches of the NW-SE striking Ravne fault that crosses the Krn Mountain. The objective is to investigate the seismicity patterns for this area of Slovenia given that future earthquakes may be triggered as a result of stress changes along neighbouring faults. Our findings include: a) stress levels have increased along the active Ravne fault for all models discussed b) stress levels have decreased along the active, NW-SE striking Idrija fault and c) stress levels throughout the crust have increased along the E-W direction but have decreased in the N-S direction (stress shadow effect). We also mapped a better correlation of the off-fault aftershock locations with stress maps incorporating the regional stress field.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2008-08-01
    Print ISSN: 0191-8141
    Electronic ISSN: 1873-1201
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-12
    Description: The region of central and eastern Europe is an area characterised by a relatively high seismic risk. Since 2001, to monitor the seismicity of this area, the OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) in Italy, the Agencija Republike Slovenije za Okolje (ARSO) in Slovenia, the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Austria, and the Università di Trieste (UniTS) have cooperated in real-time seismological data exchange. In 2014 OGS, ARSO, ZAMG and UniTS created a cooperative network named the Central and Eastern European Earthquake Research Network (CE3RN), and teamed up with the University of Naples Federico II, Italy, to implement an earthquake early warning system based on the existing networks. Since May 2014, the earthquake early warning system (EEWS) given by the integration of the PRESTo (PRobability and Evolutionary early warning SysTem) alert management platform and the CE3RN accelerometric stations has been under real-time testing in order to assess the system's performance. This work presents a preliminary analysis of the EEWS performance carried out by playing back real strong motion recordings for the 1976 Friuli earthquake (MW= 6.5). Then, the results of the first 6 months of real-time testing of the EEWS are presented and discussed.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-16
    Description: The European Plate has a 4.5 Gy long and complex tectonic history. This is reflected in the present-day large-scale crustal structures. A new digital Moho depth map is compiled from more than 250 data sets of individual seismic profiles, 3-D models obtained by body and surface waves, receiver function results and maps of seismic and/or gravity data compilations. We have compiled the first digital, high-resolution map of the Moho depth for the whole European Plate, extending from the mid-Atlantic ridge in the west to the Ural Mountains in the east, and from the Mediterranean Sea in the south to the Barents Sea and Spitsbergen in the Arctic in the north. In general, three large domains within the European Plate crust are visible. The oldest Archean and Proterozoic crust has a thickness of 40–60 km, the continental Variscan and Alpine crust has a thickness of 20–40 km, and the youngest oceanic Atlantic crust has a thickness of 10–20 km.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: Lowermost mantle velocity in the area 15°S–70°N latitude/60°W–5° W longitude is estimated using two groups of observations, complementary to each other. There are 894 Pdif observations at stations in the Balkan and Eastern Mediterranean areas from 15 major earthquakes in Central and South America. Another 218 Pdif observations are associated with four earthquakes in Greece/Turkey and one event in Africa, recorded by American stations. A Pdif slowness tomographic approach of the structures immediately above the core-to-mantle boundary (CMB) is used, incorporating corrections for ellipticity, station elevation and velocity perturbations along the ray path. A low-velocity zone above CMB with a large geographical extent, approximately in the area (35–65°N) × (40–20°W), appears to have the velocity perturbations exceeding the value actually assumed by some global models. Most likely, it is extended beneath western Africa. A high-velocity area is observed west of the low-velocity zone. The results suggest that both Cape Verde and Azorean islands are located near transition areas from low-to-high velocity values in the lowermost mantle.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...