ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 249 (1975), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 48 (1986), S. 241-250 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 26 (2003), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The present study examines the manner in which several whole-tree water transport properties scale with species-specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree behaviour was investigated. Samples of sapwood from four tropical forest canopy tree species selected to represent a range of wood density, tree size and architecture, and taxonomic diversity were used to generate moisture release curves in thermocouple psychrometer chambers, from which species-specific values of sapwood capacitance were calculated. Sapwood capacitance was then used to scale several whole-tree water transport properties determined from measurements of upper branch and basal sap flow, branch water potential, and axial and radial movement of deuterated water (D2O) injected into the base of the trunk as a tracer. Sapwood capacitance ranged from 83 to 416 kg m−3 MPa−1 among the four species studied and was strongly correlated with minimum branch water potential, soil-to-branch hydraulic conductance, daily utilization of stored water, and axial and radial movement of D2O. The species-independent scaling of several whole-tree water transport properties with sapwood capacitance indicated that substantial convergence in plant function at multiple levels of biological organization was revealed by a simple variable related to a biophysical property of water transport tissue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Freezing resistance mechanisms were studied in five endemic Hawaiian species growing at high elevations on Haleakala volcano, Hawaii, where nocturnal subzero (°C) air temperatures frequently occur. Extracellular freezing occurred at around -5°C in leaves of Argyroxiphium sandwicense and Sophora chrysophylla, but these leaves can tolerate extracellular ice accumulation to -15°C and -12°C, respectively. Mucilage, which apparently acted as an ice nucleator, comprised 9 to 11% of the dry weight of leaf tissue in these two species. Leaves of Vaccinium reticulatum and Styphelia tameiameiae were also found to tolerate substantial extracellular freezing. Dubautia menziesii, on the other hand, exhibited the characteristics of permanent supercooling; a very rapid decline in liquid water content associated with simultaneous intracellular and extracellular freezing. However, in those species that tolerate extracellular freezing, the decline in liquid water content during freezing is relatively slow. Osmotic potential was lower at pre-dawn than at midday in four of the species studied. Nocturnal production of osmotically active solutes may have helped to prevent intracellular freeze dehydration as well as to provide non-colligative protection of cell membranes. Styphelia tameiameiae supercooled to -9·3°C and tolerated tissue freezing to below -15°C, a unique combination of physiological characteristics related to freezing. Tolerance of extracellular ice formation after considerable supercooling may have resulted from low tissue water content and a high degree of intracellular water binding in this species, as determined by nuclear magnetic resonance studies. The climate at high elevations in Hawaii is relatively unpredictable in terms of the duration of subzero temperatures and the lowest subzero temperature reached during the night. It appears that plants growing in this tropical alpine habitat have been under selective pressures for the evolution of freezing tolerance mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Since its introduction in the late 19th century, the so-called cohesion theory has become widely accepted as explaining the mechanism of the ascent of sap. According to the cohesion theory, the minimum standing vertical xylem tension gradient should be 0·01 MPa m−1. When transpiration is occurring, frictional resistances are expected to make this gradient considerably steeper. The results of numerous pressure chamber measurements reported in the literature are generally regarded as corroborating the cohesion theory. Nevertheless, several reports of pressure chamber measurements in tall trees appear to be incompatible with predictions of the cohesion theory. Furthermore, the pressure chamber is an indirect method for inferring xylem pressure, which, until recently, has not been validated by comparison against a direct method. The xylem pressure probe provides a means of testing the validity of the pressure chamber and other indirect techniques for estimating xylem pressure. We discuss here the results of concurrent measurements made with the pressure chamber and the xylem pressure probe, particularly recent measurements made at the top of a tall tropical tree during the rainy season. These measurements indicate that the pressure chamber often substantially overestimates the tension previously existing in the xylem, especially in the partially dehydrated tissue of droughted plants. We also discuss other evidence obtained from classical and recent approaches for studying water transport. We conclude that the available evidence derived from a wide range of independent approaches warrants a critical reappraisal of tension-driven water transport as the exclusive mechanism of long-distance water transport in plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Hydraulic conductance was measured on leaf and stem segments excised from sugarcane plants at different stages of development. Maximum transpiration rates and leaf water potential (ΨL) associated with maximum transpiration were also measured in intact plants as a function of plant size. Leaf specific hydraulic conductivity (Lsc) and transpiration on a unit leaf area basis (E) were maximal in plants with approximately 0.2 m2 leaf area and decreased with increasing plant size. These changes in Fand Lsc were nearly parallel, which prevented φL in larger plants from decreasing to levels associated with substantial loss in xylem conductivity caused by embolism formation. Coordination of changes in E and leaf hydraulic properties was not mediated by declining leaf water status, since φL increased with plant size. Hydraulic constrictions were present at nodes and in the node-leaf sheath-leaf blade pathway. This pattern of constrictions is in accord with the idea of plant segmentation into regions differing in water transport efficiency and would tend to confine embolisms to the relatively expendable leaves at terminal positions in the pathway, thereby preserving water transport through the stem.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 8 (1985), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Frost avoidance mechanisms were studied in Espeletia spicata and Espeletia timotensis, two Andean giant rosette species. The daily courses of soil, air and tissue temperatures were measured at a site at circa 4000 m. Only the leaves were exposed to subzero temperatures; the apical bud and stem pith tissues were insulated by surrounding tissues. The leaf tissues avoided freezing by supercooling rather than by undergoing active osmotic changes. The temperatures at which ice formed in the tissues (the supercooling points) coincided with injury temperatures indicating that Espeletia tissue does not tolerate any kind of ice formation. For insulated tissue (apical bud, stem pith, roots) the supercooling point was around - 5°C coinciding with the injury temperature. Supercooling points of about –13 to - 16°C were observed for leaves. These results contrast with those reported for Afroalpine giant rosettes which tolerate extracellular freezing. The significance of different adaptive responses of giant rosettes to similar cold tropical environments is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Stomatal control of crown transpiration was studied in Anacardium excelsum, a large-leaved, emergent canopy species common in the moist forests of Central and northern South America. A construction crane equipped with a gondola was used to gain access to the uppermost level in the crown of a 35-m-tall individual. Stomatal conductance at the single leaf scale, and transpiration and total vapour phase conductance (stomatal and boundary layer) at the branch scale were measured simultaneously using the independent techniques of porometry and stem heat balance, respectively. This permitted the sensitivity of transpiration to a marginal change in stomatal conductance to be evaluated using a dimensionless coupling coefficient (1-ω) ranging from zero to 1, with 1 representing maximal stomatal control of transpiration. Average stomatal conductance varied from 0.09 mol m−2 s−1 during the dry season to 0.3 mol m−2 s−1 during the wet season. Since boundary layer conductance was relatively low (0.4 mol m−2 s−1), 1-ω ranged from 0.46 during the dry season to only 0.25 during the wet season. A pronounced stomatal response to humidity was observed, which strongly limited transpiration as evaporative demand increased. The stomatal response to humidity was apparent only when the leaf surface was used as the reference point for measurement of external vapour pressure. Average transpiration was predicted to be nearly the same during the dry and wet seasons despite a 1 kPa difference in the prevailing leaf-to-air vapour pressure difference. The patterns of stomatal behaviour and transpiration observed were consistent with recent proposals that stomatal responses to humidity are based on sensing the transpiration rate itself.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...