ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: An examination of the effect of vortex flow on hybrid rocket combustion and performance is underway. Emphasis is on response of the fuel regression rate when subjected to vortex flow. Initial results show that there is a definite effect of the vortex on fuel regression rate. Future work will focus on quantitatively measuring this regression rate. This work is part of an overall program to develop an ultra low cost fuel system for hybrid rocket engines.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: Center for Space Transportation and Applied Research Fifth Annual Technical Symposium Proceedings; 00004 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: The present oxygen-rich combustion research investigates oxygen gas generator concepts. The theoretical and modeling aspects of a selected concept are presented, together with a refined concept resulting from the findings of the study. This investigation examined a counter-flow gas generator design for O2/H2 mass ratios of 100-200, featuring a near-stoichiometric combustion zone followed by downstream mixing. The critical technologies required to develop a performance model are analyzed and include the following: (1) oxygen flow boiling; (2) two-phase oxygen flow heat transfer; (3) film-cooling in the combustion zone; (4) oxygen-rich combustion with hydrogen; and (5) mixing and dilution.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 93-2159 , ; 10 p.|AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit; Jun 28, 1993 - Jun 30, 1993; Monterey, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-15
    Description: A program is underway to demonstrate the practical feasibility of thermally-choked combustor technology with particular emphasis on rocket propulsion applications. Rather than induce subsonic to supersonic flow transition in a geometric throat, the goal is to create a thermal throat by adding combustion heat in a diverging nozzle. Such a device would have certain advantages over conventional flow accelerators assuming that the pressure loss due to heat addition does not severely curtail propulsive efficiency. As an aid to evaluation, a generalized one-dimensional compressible flow analysis tool was constructed. Simplified calculations indicate that the process is fluid dynamically and thermodynamically feasible. Experimental work is also being carried out in an attempt to develop, assuming an array of practical issues are surmountable, a practical bench-scale demonstrator using high flame speed H2/O2 combustibles.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Center for Space Transportation and Applied Research Fifth Annual Technical Symposium Proceedings; E-6 - E13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...