ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: Temperature measurements of a high-power microwave feedhorn window, obtained using an imaging IR radiometer during transmitter operation at 365 kW CW and 8.5 GHz, are discussed. The window under investigation was constructed of HTP-6, a high-thermal-performance material developed to shield the Space Shuttle Orbiter from the heat of reentry. The measurement technique is described, and experimental results are presented. The window performed adequately at 365 kW CW with a center temperature of 475 C. The tests verify that HTP-6 can be used as a window material or a support structure in high-power waveguides at power densities of 1.47 kW/sq cm for extended periods of time, with no change in its mechanical characteristics.
    Keywords: COMMUNICATIONS AND RADAR
    Type: IEEE Transactions on Instrumentation and Measurement (ISSN 0018-9456); 39; 501-503
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: The Integrated Science Instrument Module of the James Webb Space Telescope is described from a systems perspective with emphasis on unique and advanced technology aspects. The major subsystems of this flight element are described including: structure, thermal, command and data handling, and software.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: In late 2015/early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST). This test comprised the final cryo-certification and calibration test of the ISIM, after its ambient environmental test program (vibration, acoustics, EMI/EMC), and before its delivery for integration with the rest of the JWST observatory. Over the 108-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. The test verified the health and excellent performance of the instruments and ISIM systems, proving the ISIM element's readiness for integration with the telescope. We report here on the context, goals, setup, execution, and key results for this critical JWST milestone.
    Keywords: Instrumentation and Photography; Optics
    Type: GSFC-E-DAA-TN35256 , SPIE Proceedings ; 9904; 990408
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is discussed from a systems perspective with emphasis on development status and advanced technology aspects. The ISIM is one of three elements that comprise the JWST space vehicle and is the science instrument payload of the JWST. The major subsystems of this flight element and their build status are described.
    Keywords: Instrumentation and Photography
    Type: GSFC.CP.4764.2011 , SPIE Telescopes and Instrumentation; Jun 26, 2011 - Jul 02, 2011; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The James Webb Space Telescope (JWST), set to launch in mid-2020, is currently undergoing a series of system-level environmental tests to verify its workmanship and end-to-end functionality. As part of this series, the Optical Telescope Element and Integrated Science Instrument Module (OTIS) Cryo-Vacuum (CV) test, the most complex cryogenic test executed to date by NASA, has recently been completed at the Johnson Space Center's Chamber A facility. The OTIS CV test was intended as a comprehensive test of the integrated instrument and telescope systems to fully understand its optical, structural, and thermal performance within its intended flight environment. Due to its complexity, extensive pre-test planning was required to ensure payload safety and compliance with all limits and constraints. A system-level pre-test thermal model was constructed which fully captured the behavior of the payload, ground support equipment, and surrounding test chamber. This thermal model simulated both the transient cooldown to and warmup from a 20 K flight-like environment, as well as predicted the payload performance at cryo-stable conditions. The current work is an assessment of thermal model pre-test prediction performance against actual payload response during the OTIS CV test. Overall, the thermal model performed exceedingly well at predicting schedule and payload response. Looking in depth, this work examines both the benefits and shortcomings of assumptions made pre-test to simplify model execution when compared against test data. It explores in detail the role of temperature-dependent emissivities during transition to cryogenic temperatures, as well as the impact that model geometry simplifications have on tracking of critical hardware limits and constraints. This work concludes with a list of recommendations to improve the accuracy of thermal modeling for future large cryogenic tests. The insight gained from the OTIS CV test thermal modeling will benefit planning and execution for upcoming cryogenic missions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN58381 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The cryogenic thermal vacuum/thermal balance test of the James Webb Space Telescope (JWST) combined Optical Telescope Element (OTE)/Integrated Science Instrument Module (ISIM), known as the OTIS, at the Johnson Space Center (JSC) Chamber A in 2017 was likely the most complex test ever performed by NASA for an unmanned mission. The test of the combined flight Optical Telescope and ISIM elements was prefaced by years of modifications to chamber facilities, and included three extensive precursor tests of non-flight and flight hardware to establish safe and optimal test operational procedures. One critical part of the test preparation was planning for off-nominal events that could arise, including appropriate responses. In some cases, assurance of personnel and payload safety required modification of original test hardware and procedures which had to be validated before the final test could begin. This planning proved especially prescient for the OTIS test, as Hurricane Harvey struck the Houston area during the test in August 2017, and consequences for the precious payload could have been severe. This paper describes the extent of the thermal off-nominal planning undertaken for the OTIS test, including including safing for hurricanes, and some real-life effects of Hurricane Harvey on the test conduct. Documentation of the consequences and mitigations for these events are discussed. The importance of off-nominal planning for future thermal vacuum/thermal balance tests is illustrated.
    Keywords: Optics
    Type: GSFC-E-DAA-TN57714 , International Conference on Environmental Systems (ICES) 2018; Jul 09, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: The Wilkinson Microwave Anisotropy Probe (WMAP) observatory, launched June 30, 2001, is designed to measure the cosmic microwave background radiation with unprecedented precision and accuracy while orbiting the second Lagrange point (L2). The instrument cold stage must be cooled passively to 〈95K, and systematic thermal variations in selected instrument components controlled to less than 0.5 mK (rms) per spin period. This paper describes the thermal design and testing of the WMAP spacecraft and instrument. Flight thermal data for key spacecraft and instrument components are presented from launch through the first year of mission operations. Effects of solar flux variation due to the Earth's elliptical orbit about the sun, surface thermo-optical property degradations, and solar flares on instrument thermal stability are discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: SAE-2003-01-2343
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: Relatively simple experimental technique yields data processed, via straightforward mathematical model, into map of thermal irradiance over large area. Imaging infrared radiometer makes temperature map of sheet. Irradiance distribution at sheet location then deduced from temperature map. Used to obtain rapid measurements of incident-flux distribution over broad spectral range at specific locations relative to such heat sources as infrared heat lamps or lasers.
    Keywords: PHYSICAL SCIENCES
    Type: NPO-17810 , NASA Tech Briefs (ISSN 0145-319X); 14; 8; P. 42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In late 2015 early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope. This test comprised the final cryo-certification and calibration test of the ISIM before its delivery for integration with the rest of the JWST observatory. Over the roughly 100-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. We briefly summarize the goals, setup, execution, and key results for this critical JWST milestone.
    Keywords: Astrophysics; Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN41408 , SPIE Telescopes + Instrumentation Conference; Jun 26, 2016 - Jul 01, 2016; Edinburgh, UK; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...