ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-02
    Description: Thank you very much, Alberto, for your nice comments and the precious support you have given me since the very beginning of my scientific career.
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-02
    Description: In flood risk assessment, there remains a lack of analytical frameworks capturing the dynamics emerging from two-way feedbacks between physical and social processes, such as adaptation and levee effect. The former, “adaptation effect”, relates to the observation that the occurrence of more frequent flooding is often associated with decreasing vulnerability. The latter, “levee effect”, relates to the observation that the non-occurrence of frequent flooding (possibly caused by flood protection structures, e.g. levees) is often associated to increasing vulnerability. As current analytical frameworks do not capture these dynamics, projections of future flood risk are not realistic. In this paper, we develop a new approach whereby the mutual interactions and continuous feedbacks between floods and societies are explicitly accounted for. Moreover, we show an application of this approach by using a socio-hydrological model to simulate the behavior of two main prototypes of societies: green societies, which cope with flooding by resettling out of flood-prone areas; and technological societies, which deal with flooding also by building levees or dikes. This application shows that the proposed approach is able to capture and explain the aforementioned dynamics (i.e. adaptation and levee effect) and therefore contribute to a better understanding of changes in flood risk, within an iterative process of theory development and empirical research. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract The Sustainable Development Goals (SDGs) of the United Nations Agenda 2030 represent an ambitious blueprint to reduce inequalities globally and achieve a sustainable future for all mankind. Meeting the SDGs for water requires an integrated approach to managing and allocating water resources, by involving all actors and stakeholders, and considering how water resources link different sectors of society. To date, water management practice is dominated by technocratic, scenario‐based approaches that may work well in the short‐term, but can result in unintended consequences in the long‐term due to limited accounting of dynamic feedbacks between the natural, technical and social dimensions of human‐water systems. The discipline of socio‐hydrology has an important role to play in informing policy by developing a generalizable understanding of phenomena that arise from interactions between water and human systems. To explain these phenomena, socio‐hydrology must address several scientific challenges to strengthen the field and broaden its scope. These include engagement with social scientists to accommodate social heterogeneity, power relations, trust, cultural beliefs, and cognitive biases, which strongly influence the way in which people alter, and adapt to, changing hydrological regimes. It also requires development of new methods to formulate and test alternative hypotheses for the explanation of emergent phenomena generated by feedbacks between water and society. Advancing socio‐hydrology in these ways therefore represents a major contribution towards meeting the targets set by the SDGs, the societal grand challenge of our time.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-30
    Description: During the last two decades remote sensing data have led to tremendous progress in advancing flood inundation modelling. In particular, low-cost space-borne data can be invaluable for large-scale flood studies in data-scarce areas. Various satellite products yield valuable information such as land surface elevation, flood extent and water level, which could potentially contribute to various flood studies. An increasing number of research studies have been dedicated to exploring those low-cost data toward building, calibration and evaluation, as well as remote-sensed information assimilation into hydraulic models. This paper aims at reviewing these recent scientific efforts on the integration of low-cost space-borne remote sensing data with flood modelling. Potentials and limitations of those data in flood modelling are discussed. This paper also introduces the future satellite missions and anticipates their likely impacts in flood modelling. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-25
    Description: The increased socio-economic relevance of flood risk assessment has led to the development of innovative methodologies for the hydraulic simulation of river and floodplain systems, and has promoted the development of new techniques for flood hazard and inundation mapping (e.g. Di Baldassarre et al., 2010; Vorogushyn et al., 2010). In particular, one-dimensional (1D) and two-dimensional (2D) hydraulic models have been used more and more as numerical tools (e.g. Aronica et al., 2002; Hesselink et al., 2003; Horritt et al., 2007; Pappenberger et al., 2005) as these models have proven to be able to effectively simulate river hydraulics and floodplain inundation at different levels of detail (e.g. Horritt & Bates, 2001, 2002). Flood inundation models appear also to be useful tools for the reconstruction and analysis of historical events (e.g. Di Baldassarre et al., 2009; Horritt et al., 2010), which can be very important to provide a comprehensive assessment of exposure to floods and to develop flood risk management plans as required by the recent Floods Directive 2007/60/EC (European Commission, 2007). Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-23
    Description: This study used remotely sensed maps of nightlights to investigate the etiology of increasing disaster losses from hydrometeorological hazards in a data-scarce area. We explored trends in the probability of occurrence of hazardous events (extreme rainfall) and exposure of the local population as components of risk. The temporal variation of the spatial distribution of exposure to hydrometeorological hazards was studied using nightlight satellite imagery as a proxy. Temporal (yearly) and spatial (1 km) resolution make them more useful than official census data. Additionally, satellite nightlights can track informal (unofficial) human settlements. The study focused on the Samala River catchment in Guatemala. The analyses of disasters, using DesInventar Disaster Information Management System data, showed that fatalities caused by hydrometeorological events have increased. Such an increase in disaster losses can be explained by trends in both: (i) catchment conditions that tend to lead to more frequent hydrometeorological extremes (more frequent occurrence of days with wet conditions); and (ii) increasing human exposure to hazardous events (as observed by amount and intensity of nightlights in areas close to rivers). Our study shows the value of remote sensing data and provides a framework to explore the dynamics of disaster risk when ground data are spatially and temporally limited.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-03
    Description: Nature Geoscience 9, 89 (2016). doi:10.1038/ngeo2646 Authors: Anne F. Van Loon, Tom Gleeson, Julian Clark, Albert I. J. M. Van Dijk, Kerstin Stahl, Jamie Hannaford, Giuliano Di Baldassarre, Adriaan J. Teuling, Lena M. Tallaksen, Remko Uijlenhoet, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, Sally Rangecroft, Niko Wanders & Henny A. J. Van Lanen Drought management is inefficient because feedbacks between drought and people are not fully understood. In this human-influenced era, we need to rethink the concept of drought to include the human role in mitigating and enhancing drought.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: The design of flood defence structures requires the estimation of flood water levels corresponding to a given probability of exceedance, or return period. In river flood management, this estimation is often done by statistically analysing the frequency of flood discharge peaks. This typically requires three main steps. First, direct measurements of annual maximum water levels at a river cross-section are converted into annual maximum flows by using a rating curve. Second, a probability distribution function is fitted to these annual maximum flows to derive the design peak flow corresponding to a given return period. Third, the design peak flow is used as input to a hydraulic model to derive the corresponding design flood level. Each of these three steps is associated with significant uncertainty that affects the accuracy of estimated design flood levels. Here, we propose a simulation framework to compare this common approach (based on the frequency analysis of annual maximum flows) with an alternative approach based on the frequency analysis of annual maximum water levels. The rationale behind this study is that high water levels are directly measured, and they often come along with less uncertainty than river flows. While this alternative approach is common for storm surge and coastal flooding, the potential of this approach in the context of river flooding has not been sufficiently explored. Our framework is based on the generation of synthetic data to perform a numerical experiment and compare the accuracy and precision of estimated design flood levels based on either annual maximum river flows (common approach) or annual maximum water levels (alternative approach).
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Bangladeshi people use multiple strategies to live with flooding events and associated riverbank erosion. They relocate, evacuate their homes temporarily, change cropping patterns, and supplement their income from migrating household members. In this way, they can reduce the negative impact of floods on their livelihoods. However, these societal responses also have negative outcomes, such as impoverishment. This research collects quantitative household data and analyzes changes of livelihood conditions over recent decades in a large floodplain area in north-west Bangladesh. It is found that while residents cope with flooding events, they do not achieve successful adaptation. With every flooding, people lose income and assets, which they can only partially recover. As such, they are getting poorer, and therefore less able to make structural adjustments that would allow adaptation in the longer term.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-07-07
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...