ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-01
    Print ISSN: 1542-7390
    Electronic ISSN: 1542-7390
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Cybernetics, Artificial Intelligence and Robotics; Aircraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN62566 , NASA Goddard Workshop on Artificial Intelligence; Nov 27, 2018 - Nov 29, 2018; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: In November 2017, the NASA Goddard Space Flight Center (GSFC) Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) experiment successfully demonstrated the feasibility of X-ray Pulsar Navigation (XNAV) as part of the Neutron Star Interior Composition Explorer (NICER) mission, which is an X-ray Astrophysics Mission of Opportunity currently operating onboard the International Space Station (ISS). XNAV provides a GPS-like absolute autonomous navigation and timing capability available anywhere in the Solar System and beyond. While the most significant benefits of XNAV are expected to come in support of very deep-space missions, the absolute autonomous navigation and timing capability also has utility for inner Solar System missions where increased autonomy or backup navigation and timing services are required, e.g., address loss of communication scenarios.The NASA commitment to develop a Gateway to support exploration of the Moon and eventually Mars, as well as current and future robotic missions such as James Webb Space Telescope (JWST), New Horizons, and much more, certainly will tax the existing ground based infrastructure in terms of availability. There- fore, an extended look at the feasibility and potential performance of XNAV for comparable missions is warranted. In this paper, we briefly review the XNAV concept and present case studies of its utility and performance for a Gateway orbit, Sun-Earth libration orbit, and a deep space transit trajectory.
    Keywords: Engineering (General)
    Type: AAS 19-097 , GSFC-E-DAA-TN65066 , Annual AAS Guidance, Navigation and Control Conference; Feb 01, 2019 - Feb 06, 2019; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC-E-DAA-TN64947 , American Astronautical Society Annual Guidance and Control Conference (AAS GNC 2019); Feb 01, 2019 - Feb 06, 2019; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Morpheus Project began in late 2009 as an ambitious e ort code-named Project M to integrate three ongoing multi-center NASA technology developments: humanoid robotics, liquid oxygen/liquid methane (LOX/LCH4) propulsion and Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) into a single engineering demonstration mission to be own to the Moon by 2013. The humanoid robot e ort was redirected to a deploy- ment of Robonaut 2 on the International Space Station in February of 2011 while Morpheus continued as a terrestrial eld test project integrating the existing ALHAT Project's tech- nologies into a sub-orbital ight system using the world's rst LOX/LCH4 main propulsion and reaction control system fed from the same blowdown tanks. A series of 33 tethered tests with the Morpheus 1.0 vehicle and Morpheus 1.5 vehicle were conducted from April 2011 - December 2013 before successful, sustained free ights with the primary Vertical Testbed (VTB) navigation con guration began with Free Flight 3 on December 10, 2013. Over the course of the following 12 free ights and 3 tethered ights, components of the ALHAT navigation system were integrated into the Morpheus vehicle, operations, and ight control loop. The ALHAT navigation system was integrated and run concurrently with the VTB navigation system as a reference and fail-safe option in ight (see touchdown position esti- mate comparisons in Fig. 1). Flight testing completed with Free Flight 15 on December 15, 2014 with a completely autonomous Hazard Detection and Avoidance (HDA), integration of surface relative and Hazard Relative Navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman lter software, and landing within 2 meters of the VTB GPS-based navigation solution at the safe landing site target. This paper describes the Mor- pheus joint VTB/ALHAT navigation architecture, the sensors utilized during the terrestrial ight campaign, issues resolved during testing, and the navigation results from the ight tests.
    Keywords: Spacecraft Instrumentation and Astrionics; Space Transportation and Safety
    Type: JSC-CN-35003 , AIAA SciTech 2016; Jan 04, 2016 - Jan 06, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-03
    Description: With the increasing traffic in the lunar regime as part of NASA efforts to return humans to the moon. In order to support these missions, new capabilities are needed to support autonomous navigation and inter-asset communication. Additionally, with maturation and flight demonstration of increasingly capable small satellites, there is an opportunity to embed technology into a small spacecraft as part of companion missions. This paper addresses one such architecture, taking advantage of a lunar lander vehicle to host a companion spacecraft to build out lunar navigation and communication capability. The backbone of this spacecraft is the Navigator GPS receiver. This hardware has continually broken records on high altitude GPS coverage and has the potential to support autonomous navigation at lunar distances. This research proposes a large cubesat built around this technology and catching a ride to the moon via a lander mission. The concept of operations includes the spacecraft deploying prior to the lunar sphere of influence and maneuvering to enter into a lunar orbit. With the Navigator receiver, this spacecraft is capable of a large amount of autonomy, with a limited need for ground-based orbit determination. This spacecraft will fly alongside the lander, acting as a navigation reference during cruise, descent, and post-landing for mission validation. To assess this mission scenario, three aspects are covered in detail herein: the feasibility and mission requirements for entering into a lunar orbit given deployment along a lander surface-bound trajectory, the performance capability of the receiver along this transfer trajectory and in lunar orbit, and the ability to support navigation of the lander itself. These three areas are discussed in detail, providing results that support feasibility of the mission and determination of initial requirements.
    Keywords: Space Transportation and Safety
    Type: IAC-19-A3,2C,5,x52338 , M19-7662 , International Astronautical Congress (IAC); Oct 21, 2019 - Oct 25, 2019; Wasington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Orion vehicle is being designed to provide nominal crew transport to the lunar transportation stack in low Earth orbit, crew abort prior during transit to the moon, and crew return to Earth once lunar orbit is achieved. One of the design requirements levied on the Orion vehicle is the ability to return to the vehicle and crew to Earth in the case of loss of communications and command with the Mission Control Center. Central to fulfilling this requirement, is the ability of Orion to navigate autonomously. In low-Earth orbit, this may be solved with the use of GPS, but in cis-lunar and lunar orbit this requires optical navigation. This paper documents the preliminary analyses performed by members of the Orion Orbit GN&C System team.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: 18th AASAIAA Space Flight Mechanics Meeting; Jan 27, 2008 - Jan 31, 2008; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: AAS 08-056 , 31st Annual Guidance and Control Conference; Feb 01, 2008 - Feb 06, 2008; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans back to the Moon for the first time since the Apollo program. For nominal lunar mission operations, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of Orion and uplink state information to support Lunar return. However, in the loss of communications contingency return scenario, Orion must safely return the crew to the Earth's surface. The navigation design solution for this loss of communications scenario is optical navigation consisting of lunar landmark tracking in low lunar orbit and star- horizon angular measurements coupled with apparent planetary diameter for Earth return trajectories. This paper describes the optical measurement errors and the navigation filter that will process those measurements to support navigation for safe crew return.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: AAS 10-055 , JSC-CN-19622 , 33rd Annual AAS Guidance and Control Conference; Feb 06, 2010 - Feb 10, 2010; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A crewed mission to a Near-Earth Object (NEO) was recently identified as a NASA Space Policy goal and priority. In support of this goal, a study was conducted to identify the initial considerations for performing the navigation and flight dynamics tasks of this mission class. Although missions to a NEO are not new, the unique factors involved in human spaceflight present challenges that warrant special examination. During the cruise phase of the mission, one of the most challenging factors is the noisy acceleration environment associated with a crewed vehicle. Additionally, the presence of a human crew necessitates a timely return trip, which may need to be expedited in an emergency situation where the mission is aborted. Tracking, navigation, and targeting results are shown for sample human-class trajectories to NEOs. Additionally, the benefit of in-situ navigation beacons on robotic precursor missions is presented. This mission class will require a longer duration flight than Apollo and, unlike previous human missions, there will likely be limited communication and tracking availability. This will necessitate the use of more onboard navigation and targeting capabilities. Finally, the rendezvous and proximity operations near an asteroid will be unlike anything previously attempted in a crewed spaceflight. The unknown gravitational environment and physical surface properties of the NEO may cause the rendezvous to behave differently than expected. Symbiosis of the human pilot and onboard navigation/targeting are presented which give additional robustness to unforeseen perturbations.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: AAS 11-051 , JSC-CN-22574 , JSC-CN-22962 , 34th Annual AAS Guidance and Control Conference; Feb 04, 2011 - Feb 09, 2011; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...