ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Garofalo, Paolo Stefano (2012): The composition of Alpine marine sediments (Bündnerschiefer Formation, W Alps) and the mobility of their chemical components during orogenic metamorphism. Lithos, 128-131, 55-72, https://doi.org/10.1016/j.lithos.2011.10.009
    Publication Date: 2023-07-10
    Description: The Bündnerschiefer of the Swiss-Italian Alps is a large sedimentary complex deposited on the Piemonte-Liguria and Valais oceans and associated continental margins from the upper Jurassic to Eocene. It is made of a large variety of sequences associated or not with an ophiolitic basement. The Bündnerschiefer makes an accretionary prism that developed syn-tectonically from the onset of alpine subduction, and it records orogenic metamorphism following episodes of HP metamorphism. The Bündnerschiefer shares important similarities with the Otago schists of New Zealand and with the Wepawaug schists of Connecticut, both of which form accretionary prisms and have an orogenic metamorphic imprint. With the aim of testing the hypothesis of mobility of chemical components as a function of metamorphic grade, in this work I present fifty-five bulk chemical analyses of various lithological facies of the Bündnerschiefer collected along the well-studied field gradient of the Lepontine dome of Central Switzerland, in the Prättigau half window of East Switzerland, and in the Tsaté Nappe of Valle d'Aosta (Italy). The dataset includes the concentration of major components, large ion lithophile elements (Rb, Sr, Ba, Cs), high field strength elements (Zr, Ti, Nb, Th, U, Ta, Hf), fluid-mobile light elements (B, Li), volatiles (CO2, S), REEs, and Y, V, Cr, Co, Sn, Pb, Cu, Zn, Tl, Sb, Be, and Au. These data are compared against the compositions of the global marine sediment reservoir, typical crustal reservoirs, and against the previously measured compositions of Otago and Wepawaug schists. Results reveal that, irrespective of their metamorphic evolution, the bulk chemical compositions of orogenic metasediments are characterized by mostly constant compositional ratios (e.g., K2O/Al2O3, Ba/Al2O3, Sr/CaO, etc.), whose values in most cases are undistinguishable from those of actual marine sediments and other crustal reservoirs. For these rocks, only volatile concentrations decrease dramatically as a function of metamorphic temperature, and significant deviations from the reservoir signatures are evident for SiO2, B, and Li. These results are interpreted as an indication of residual enrichment in the sediments, a process taking place during syn-metamorphic dehydration from the onset of metamorphism in a regime of chemical immobility. Residual enrichment increased the absolute concentrations of the chemical components of these rocks, but did not modify significantly their fundamental ratios. This poor compositional modification of the sediments indicates that orogenic metamorphism in general does not promote significant mass transfer from accretionary prisms. In contrast, mass transfer calculations carried out in a shear zone crosscutting the Bündnerschiefer shows that significant mass transfer occurs within these narrow zones, resulting in gains of H2O, SiO2, Al2O3, K2O, Ba, Y, Rb, Cu, V, Tl, Mo, and Ce during deformation and loss of Na2O, CO2, S, Ni, B, U, and Pb from the rock. These components were presumably transported by an aquo-carbonic fluid along the shear zone. These distinct attitudes to mobilize chemical elements from orogenic sediments may have implications for a potentially large number of geochemical processes in active continental margins, from the recycling of chemical components at plate margins to the genesis of hydrothermal ore deposits.
    Keywords: Aluminium oxide; Antimony; Barium; Beryllium; Boron; Bündnerschiefer Formation, Western Alps; Caesium; Calcium oxide; Carbon, organic, total; Carbon dioxide; Cerium; Chloride; Chromium(III) oxide; Cobalt; Copper; Dysprosium; Erbium; Europium; Fluorine; Gadolinium; Geological sample; GEOS; Gold; Hafnium; Holmium; Iodine; Iron oxide, Fe2O3; Lanthanum; LATITUDE; Lead; Lithium; LONGITUDE; Loss on ignition; Lutetium; Magnesium oxide; Manganese oxide; Molybdenum; Neodymium; Nickel; Niobium; Nitrogen, inorganic; Phosphorus pentoxide; Potassium oxide; Praseodymium; Rubidium; Samarium; Sample code/label; Silicon dioxide; Sodium oxide; Strontium; Sulfur, total; Tantalum; Terbium; Thorium; Thulium; Tin; Titanium dioxide; Uranium; Vanadium; WAlps; Ytterbium; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 2751 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-13
    Description: The dynamic evolution of fault zones at the seismogenic brittle–ductile transition zone (BDTZ) expresses the delicate interplay between numerous physical and chemical processes. Deformation and fluid flow at the BDTZ are closely related and mutually dependent during repeating and transient cycles of frictional and viscous deformation. Despite numerous studies documenting in detail seismogenic faults exhumed from the BDTZ, uncertainties remain as to the exact role of fluids in facilitating broadly coeval brittle and ductile deformation at that structural level. We combine structural analysis, fluid inclusion, and mineral chemistry data from synkinematic and authigenic minerals to reconstruct the temporal variations in fluid pressure (Pf), temperature (T), and bulk composition (X) of the fluids that mediated deformation and steered strain localization along BFZ300, a strike–slip fault originally active at the BDTZ. BFZ300 deforms the Paleoproterozoic migmatitic basement of southwestern Finland and hosts in its core two laterally continuous quartz veins formed by two texturally distinct types of quartz – Qtz I and Qtz II, with Qtz I older than Qtz II. Veins within the damage zone are formed exclusively by Qtz I. Mesostructural and microstructural analysis combined with fluid compositional data indicate recurrent cycles of mutually overprinting brittle and ductile deformation triggered by oscillations of fluid pressure peaking at 210 MPa. Fluid inclusion microthermometry and mineral pair geothermometry indicate that the two documented quartz types precipitated from different fluid batches, with bulk salinities in the 1 wt % NaCleq–5 wt % NaCleq range for Qtz I and in the 6 wt % NaCleq–11 wt % NaCleq range for Qtz II. The temperature of the fluids involved with initial strain localization and later fault reactivation evolved through time from 〉 350 ∘C during Qtz I precipitation to
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-21
    Description: The dynamic evolution of fault zones at the seismogenic brittle-ductile transition zone (BDTZ) expresses the delicate interplay of numerous physical and chemical processes that occur at the time of strain localization. Deformation and flow of aqueous fluids in these zones, in particular, are closely related and mutually dependent during cycles of repeating, transient frictional and viscous deformation. Despite numerous studies documenting in detail seismogenic faults exhumed from the BDTZ, uncertainties remain as to the role of fluids in facilitating deformation in this zone, particularly with regard to the mechanics of broadly coeval brittle and ductile deformation. We combine here structural analysis, fluid inclusion data and mineral chemistry data from synkinematic and authigenic minerals to reconstruct the temporal variations in P, T and bulk composition of the fluids that mediated deformation and steered strain localization in a strike-slip fault from the BDTZ. This is a fault formed within the Paleoproterozoic migmatitic basement of southwestern Finland, hosting in its core two laterally continuous quartz veins formed by two texturally distinct quartz types – Qtz I and Qtz II, where Qtz I is demonstrably older than Qtz II. Veins within the diffuse damage zone of the fault are infilled by Qtz I. Multi-scalar structural analysis indicates recurrent cycles of mutually overprinting brittle and ductile deformation. Fluid inclusion microthermometry and mineral pair geothermometry indicate that both quartz types precipitated from a fluid that was in a homogeneous state during the recurrent cycles of faulting, and whose bulk salinity was in the 0–5 wt % NaCleq range. The temperature of the fluid phase involved with the various episodes of initial strain localization and later reactivation changed with time, from c. 240 °C in the damage zone to c. 350 °C in the core during Qtz I precipitation to 〈 200 °C at the time of Qtz II crystallization. Fluid pressure estimates show an oscillation in pore pressure comprised between 160 and 10 MPa during the fault activity stages. Our results suggest significant variability in the overall physical conditions during the fault deformation history, possibly reflecting the interaction of several batches of compositionally similar fluids ingressing the dilatant fault zone at different stages of its evolution, each with specific T and P conditions. Initial, fluid-mediated embrittlement of the faulted rock volume generated a diffuse network of joint and/or hybrid/shear fractures in the damage zone, whereas progressive strain localization led to more localized deformation within the fault core. Localization was guided by cyclically increasing fluid pressure and transient embrittlement of a system that was otherwise at overall ductile conditions. Our analysis implies that fluid overpressure at the brittle-ductile transition can play a key role in the initial embrittlment of the metamorphic basement and strain localization mechanisms.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
    Publication Date: 2020-06-03
    Description: - We provide the first isotopic geochronological constraints on brittle deformation in the NA by illite K-Ar dating of brittle fault rocks - A combined structural-geochronological approach constrains a Late Miocene-Early Pliocene regional compressive stress state
    Description: The Northern Apennines (NA) orogenic wedge formed during Oligocene-Miocene convergence and westward subduction of Adria beneath the European Plate. Extension ensued in the Mid-Late Miocene in response to Adria roll-back, causing opening of the back-arc Northern Tyrrhenian Sea. Whether extension continues uninterrupted since the Mid-Late Miocene or it was punctuated by short-lived compressional events, remains, however, uncertain. We used the K-Ar method to date a set of brittle-ductile and brittle deformation zones from the Island of Elba to contribute to this debate. We dated the low-angle Zuccale Fault (ZF), the Capo Norsi-Monte Arco Thrust (CN-MAT), and the Calanchiole Shear Zone (CSZ). The CN-MAT and CSZ are moderately west dipping, top-to-the-east thrusts in the immediate footwall of the ZF. The CSZ slipped 6.14 ± 0.64 Ma (〈0.1 μm fraction) and the CN-MAT 4.90 ± 0.27 Ma ago (〈0.4 μm fraction). The ZF, although cutting the two other faults, yielded an older age of 7.58 ± 0.11 Ma (〈0.1 μm fraction). The ZF gouge, however, contains an illitic detrital contaminant from the Paleozoic age flysch deformed in its hanging wall and the age thus is a maximum faulting age. Removal of ~1% of a 300-Ma-old contaminant brings the ZF faulting age to 〈4.90 Ma. Our results provide the first direct dating of brittle deformation in the Apennines, constraining Late Miocene-Early Pliocene regional compression. They call for a refinement of current NA geodynamic models in the framework of the Northern Tyrrhenian Sea extension.
    Description: Published
    Description: 3229–3243
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: K-Ar dating fault gouge ; Northern Apennines ; Elba Island ; Neogene geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-22
    Description: We document the tectonic and metamorphic evolution of thrust nappes of the eastern island of Elba. The area exposes a natural cross section of the Northern Apennines hinterland, from the metamorphic basement units to the overlying continent- and ocean-derived nappes. We integrated mapping, analysis of structures and microstructures, and the interpretation of drill core logs with lithostratigraphic, metamorphic, and geochronological constraints, producing a novel geological map of eastern Elba (1:5'000 scale). We show that the area experienced polyphase Oligocene - Pliocene contractional tectonics marked by in-sequence and out-of-sequence thrusting accompanied by folding and overprinted by faulting in the Pliocene. Magmatism occurred during contraction with post-magmatic thrusting ultimately coupling HP-LT and LP-HT units. Drill core logs allow for the first time the reconstruction of the N-dipping character of the Zuccale Fault, which represents the youngest (late Miocene - early Pliocene) large-scale structure in the area.
    Description: Published
    Description: 519-532
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Geological Map ; Elba Island ; Northern Apennines ; Tectonic evolution ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-06
    Description: We present the results of geological and structural investigation documenting the interaction between hydrothermal fluids and host rock leading to a vein-type ore mineralization at shallow crustal depths (〈7 km) in the mining district of the eastern Island of Elba (Italy). Sulfide- and iron-rich veins and breccia in addition to minor massive iron-ore bodies form the mineralized system. Structural mapping and analysis of vein systems, fractures, faults and associated fault rocks as well as fracture opening modes show that the main factors controlling the formation and distribution of the mineralization are lithology, deformation style and deformation intensity. Their interplay led to a positive feedback between the evolution of pore pressure through time, strain localization and the resulting mineralization. Inversion of fault and vein data defines an E-W extensional stress field at the time of faulting, which favoured fluid ingress and pervasive flow within the porous host sandstone, interstitial sulfide precipitation and reduction of the primary bulk porosity. Subsequently, cyclic channelized fluid flow during repeated fluid ingresses caused extensive veining and numerous episodes of breccia formation.
    Description: Published
    Description: 210-230
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Hydrothermalism ; Upper crust ; Faulting ; Fluids Island of Elba ; Structural analysis ; Island of Elba ; Northern Apennines ; deformation and hydrothermal fluid circulation in upper crust
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...