ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8900
    Keywords: Cellulose acetate ; composting ; radiochemical labeling ; biodegradation ; blend miscibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this account, we report our findings on blends of cellulose acetate having a degree of substitution (DS) of 2.49 (CA2.5) with a cellulose acetate having a DS of 2.06 (CA2.0). This blend system was examined over the composition range of 0–100% CA2.0 employing both solvent casting of films (no plasticizer) and thermal processing (melt-compressed films and injection molding) using poly(ethylene glycol) as a common plasticizer. All thermally processed blends were optically clear and showed no loss in optical quality after storage for several months. Thermal analysis and measurement of physical properties indicate that blends in the middle composition range are partially miscible, while those at the ends of the composition range are miscible. We suggest that the miscibility of these cellulose acetate blends is influenced primarily by the monomer composition of the copolymers. Bench-scale simulated municipal composting confirmed the biodestructability of these blends and indicated that incorporation of a plasticizer accelerated the composting rates of the blends.In vitro aerobic biodegradation testing involving radiochemical labeling conclusively demonstrated that both the lower DS CA2.0 and the plasticizer significantly enhanced the biodegradation of the more highly substituted CA2.5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8900
    Keywords: Cellulose ester ; aliphatic polyester ; composting ; biodegradation ; blends
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A series of miscible blends consisting of cellulose acetate propionate (CAP) and poly(ethylene glutarate) (PEG) or poly(tetramethylene glutarate) (PTG) were evaluated in a static bench-scale simulated municipal compost environment. Samples were removed from the compost at different intervals, and the weight loss was determined before evaluation by gel permeation chromatography, scanning electron microscopy, and1H NMR. The type of polyester (PEG versus PTG) in the blend made no difference in composting rates. At fixed CAP degree of substitution (DS), when the content of polyester in the blend was increased, the rate of composting and the weight loss due to composting increased. When the CAP was highly substituted, little degradation was observed within 30 days and almost all of the weight loss was ascribed to loss of polyester. Although the polyester was still observed to degrade faster, when the CAP DS was below approximately 2.0, both components are observed to degrade. The data suggests that initial degradation of the polyester is by chemical hydrolysis and the rate of this hydrolysis is very dependent upon the temperature profile of the compost and upon the DS of the CAP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Methods in cell science 6 (1980), S. 51-53 
    ISSN: 1573-0603
    Keywords: bone marrow cells ; hemopoietic cells ; rapid cultivation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We describe a nonenzymatic method for obtaining bone marrow cells by flushing chick long bone with a syringe filled with sterile saline.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 50 (1993), S. 1739-1746 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Biodegradation of cellulose acetate and cellulose propionate was conclusively established with a naturally derived mixed microbial culture derived from activated sludge and 14C labeled cellulose esters. Radiolabeled cellulose esters were synthesized with either [1-14C]-acetate or [1-14C]-propionate and back hydrolyzed to the desired degree of substitution (DS) ranging from 1.77 to 2.64. Biodegradation was measured in an in vitro aerobic culture system that was designed to capture 14CO2 produced by the aerobic microbial metabolism of the cellulose esters. Microorganisms were able to extensively degrade cellulose [1-14C]-acetate (CA) with DS ranging from 1.85 to 2.57 over periods of 14-31 days. More than 80% of the original 14C-polymeric carbon was biodegraded to 14CO2 for CA substrates with a DS of 1.85. CA polymers with a DS of 2.07 and 2.57 yielded over 60% conversion to 14CO2. The amount of biodegradation that was observed with cellulose [1-14C]-propionate with DS of 2.11, 2.44, and 2.64 were lower than the corresponding acetyl ester and ranged from 0.09 to 1.1%. However, cellulose [1-14C]-propionate with a DS of 1.77 and 1.84 underwent very rapid degradation in the mixed culture system, with 70 to over 80% conversion of labeled polymeric carbon metabolized to 14CO2 in 29 days. The high level of microbial utilization of carbon from both cellulose esters and its conversion to CO2 confirms the biodegradability of these polymers and the potential they have for total mineralization in natural microbiologically active environments. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 47 (1993), S. 1709-1719 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Two separate assay systems were used to evaluate the biodegradation potential of cellulose acetate: an in vitro enrichment cultivation technique (closed batch system), and a system in which cellulose diacetate (CDA) films were suspended in a wastewater treatment system (open continuous feed system). The in vitro assay employed a stable enrichment culture, which was initiated by inoculating a basal salts medium containing cellulose acetate with 5% (v/v) activated sludge. Microscopic examination revealed extensive degradation of CDA (DS = 2.5) fibers after 2-3 weeks of incubation. Characterization of the CA fibers recovered from inoculated flasks demonstrated a lower average degree of substitution and a change in the mol wt profiles. In vitro enrichments with CDA (DS = 1.7) films were able to degrade 〉 80% of the films in 4-5 days. Cellulose acetate (DS = 2.5) films required 10-12 days for extensive degradation. Films prepared from cellulose triacetate remained essentially unchanged after 28 days in the in vitro assay. The wastewater treatment assay was less active than the in vitro enrichment system. For example, approximately 27 days were required for 70% degradation of CDA (DS = 1.7) films to occur while CDA (DS = 2.5) films required approximately 10 weeks before significant degradation was obtained. Supporting evidence for the biodegradation potential of cellulose acetate was obtained through the conversion of cellulose [1-14C]-acetate to 14CO2 in the in vitro assay. The results of this work demonstrate that cellulose acetate fibers and films are potentially biodegradable and that the rate of biodegradation is highly dependent on the degree of substitution. © 1993 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 52 (1994), S. 1477-1488 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Composting is an accelerated biological decay process viewed by many to be a potential solution to the solid-waste management crisis existing in many parts of the world. As part of a program to develop environmentally nonpersistent polymers that are compatible with a composting environment, we have developed a bench-scale compost methodology that emulates a high efficiency municipal windrow composting operation. A series of cellulose acetate films, differing in degree of substitution, were evaluated in this bench-scale system. In addition, commercially available biodegradable polymers such as poly(hydroxybutyrate-co-valerate) (PHBV) and polycaprolactone (PCL) were included as points of reference. Based on film disintegration and on film weight loss, cellulose acetates, having degrees of substitution less than approximately 2.20, compost at rates comparable to that of PHBV. NMR and GPC analyses of composted films indicate that low molecular weight fractions are removed preferentially from the more highly substituted and slower degrading cellulose acetates. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 1994-01-01
    Print ISSN: 0141-0229
    Electronic ISSN: 1879-0909
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...