ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 19 (1980), S. 1685-1691 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 25 (1986), S. 5751-5755 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 214 (1988), S. 198-203 
    ISSN: 1617-4623
    Keywords: Temperature dependent UV resistance ; Temperature dependent DNA repair ; Daughter strand gap repair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have found that several excision deficient derivatives of Escherichia coli K12 survive better after UV irradiation if incubated at 42°C than if incubated at 30°C. The highest survival was observed when incubation at 42°C followed UV irradiation and was maintained for at least 16 h. Our results indicate that this temperature dependent resistance (TDR) requires a functional recA gene, but not uvr A, uvrB, recF, or recB genes, or the recA441 (tif-1) mutation which allows thermoinduction of the recA-lexA regulon. Our data are consistent with the idea that the increase in survival observed at 42°C reflects enhanced daughterstrand gap repair by DNA strand exchange. Although the conditions used to elicit TDR can induce heat shock proteins and thermotolerance in E. coli, the relationship between the two responses remains to be elucidated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 201 (1985), S. 387-392 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Derivatives of Escherichia coli K-12 carrying a deletion of the recA gene survive exposure to UV (254 nm) better if they also contain the lexA41 mutation which codes for a labile LexA protein. This effect of the lexA41 mutation is not observed in comparable strains carrying a uvr A6 mutation. Using two independent methods to detect pyrimidine dimers we found that UV irradiated RecA deficient cells removed dimers from their DNA more rapidly if they contained the lexA41 mutation than if the contained the wild-type lexA gene. Our results are consistent with the idea that a relatively high level of UvrABC incision nuclease resulting from inefficient repression of the corresponding genes by the labile LexA41 protein facilitates excision of pyrimidine dimers from the DNA of UV irradiated cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 113 (1971), S. 285-296 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Our results indicate that cells of excision deficient (uvr) mutants of Escherichia coli K-12 which survive exposure to ultraviolet radiation may require several hours to complete their recovery. For example, the duration of the recovery period for cells exposed to 63 ergs mm-2 at 254 nm was about 5 hours, the equivalent of slightly more than 4 generations of the unirradiated controls. During the recovery period the rate of cell division was reduced (Figs. 3 and 4), the cells gradually regained resistance to complex medium (Figs. 1 and 3), and they became refractory to photoreactivation (Fig. 1). Over the same period of time their pattern of DNA synthesis changed. More intact molecules, similar to those found in unirradiated controls, and relatively fewer discontinuous molecules were synthesized (Figs. 6 and 7).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 141 (1975), S. 189-206 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have examined lexA1 uvr A6 and recF143 uvr B δ derivatives of Escherichia coli K-12 for post-replication repair and DNA synthesis after UV irradiation. Compared to corresponding lex + rec+strains, we found that the lexA and recF cells were defective in (1) conveting short DNA segments synthesized after irradiation to DNA of normal size; (2) synthesizing high molecular weight DNA after irradiation; (3) transferring pyrimidine dimers from irradiated DNA into unirradiated daughter strands. Our results support the hypothesis that after UV irradiation the formation of large DNA molecules in excision-deficient cells of E. coli depends directly or indirectly upon joining short DNA segments into longer strands, concomitant with the transfer of DNA from irradiated tamplates into unirradiated daughter strands. This process appears to require the activity of lexA and recF genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Somatic cell and molecular genetics 20 (1994), S. 233-242 
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract A shuttle vector (pZH-1) carrying theE. coli lacZ gene under control of the SV40 early promoter was irradiated with UV and introduced into repair-proficient or repair-deficient human cell lines. The expression of irradiatedlacZ compared to unirradiatedlacZ was greater in repair-proficient cells (HT-1080) than in repair-deficient cells (XP12RO-SV40) belonging to xeroderma pigmentosum complementation group A. To ascertain whether the expression oflacZ in the repair-proficient cells was correlated with the removal of cyclobutane pyrimidine dimers (CPDs), we purified DNA from the recipient cells and used the CPD-specific enzyme T4 endonuclease V to measure the frequency of CPDs remaining in the plasmid as a whole and in two restriction fragments derived from it. We found that removal of CPDs occurred in both fragments in the repair-proficient cells but not in the repair-deficient cells. Our results provide the first direct evidence for the removal of CPDs from UV irradiated plasmids introduced into human cells and support the notion that expression of the UV-damagedlacZ gene in repair-proficient human cells reflects the removal of transcription blocking lesions from the gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 18 (1982), S. 271-283 
    ISSN: 0730-2312
    Keywords: E coli ; DNA damage ; excision repair ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bacteria and eukaryotic cells employ a variety of enzymatic pathways to remove damage from DNA or to lessen its impact upon cellular functions. Most of these processes were discovered in Escherichia coli and have been most extensively analyzed in this organism because suitable mutants have been isolated and characterized. Analogous pathways have been inferred to exist in mammalian cells from the presence of enzyme activities similar to those known to be involved in repair in bacteria, from the analysis of events in cells treated with DNA damaging agents, and from the analysis of the few naturally occurring mutant cell types.Excision repair of pyrimidine dimers produced by UV in E coli is initiated by an incision event catalyzed by a complex composed of uvrA, uvrB, and uvrC gene products. Multiple exonuclease and polymerase activities are available for the subsequent excision and resynthesis steps. In addition to the constitutive pathway, which produces short patches of 20-30 nucleotides, an inducible excision repair process exists that produces much longer patches. This long patch pathway is controlled by the recA-lexA regulatory circuit and also requires the recF gene. It is apparently not responsible for UV-induced mutagenesis. However, the ability to perform inducible long patch repair correlates with enhanced bacterial survival and with a major component of the Weigle reactivation of bacteriophage with double-strand DNA genomes.Mammalian cells possess an excision repair pathway similar to the constitutive pathway in E coli. Although not as well understood, the incision event is at least as complex, and repair resynthesis produces patches of about the same size as the constitutive short patches. In mammalian cells, no patches comparable in size to those produced by the inducible pathway of E coli are observed.Repair in mammalian cells may be more complicated than in bacteria because of the structure of chromatin, which can affect both the distribution of DNA damage and its accessibility to repair enzymes. A coordinated alteration and reassembly of chromatin at sites of repair may be required. We have observed that the sensitivity of digestion by staphylococcal nuclease (SN) of newly synthesized repair patches resulting from excision of furocoumarin adducts changes with time in the same way as that of patches resulting from excision of pyrimidine dimers. Since furocoumarin adducts are formed only in the SN-sensitive linker DNA between nucleosome cores, this suggests that after repair resynthesis is completed, the nucleosome cores in the region of the repair event do not return exactly to their original positions.We have also studied excision repair of UV and chemical damage in the highly repeated 172 base pair α DNA sequence in African green monkey cells. In UV irradiated cells, the rate and extent of repair resynthesis in this sequence is similar to that in bulk DNA. However, in cells containing furocoumarin adducts, repair resynthesis in α DNA is only about 30% of that in bulk DNA. Since the frequency of adducts does not seem to be reduced in α DNA, it appears that certain adducts in this unique DNA may be less accessible to repair.Endonuclease V of bacteriophage T4 incises DNA at pyrimidine dimers by cleaving first the glycosylic bond between deoxyribose and the 5′ pyrimidine of the dimer and then the phosphodiester bond between the two pyrimidines. We have cloned the gene (denV) that codes for this enzyme and have demonstrated its expression in uvrA recA and uvrB recA cells of E coli. Because T4 endonuclease V can alleviate the excision repair deficiency of xeroderma pigmentosum when added to permeabilized cells or to isolated nuclei after UV irradiation, the cloned denV gene may ultimately be of value for analyzing DNA repair pathways in cultured human cells.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 1979-06-01
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...