ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6873
    Keywords: oculomotor ; burst neurons ; system identification ; saccade ; modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Medicine , Physics
    Notes: Abstract The objective of system identification methods is to construct a mathematical model of a dynamical system in order to describe adequately the input-output relationship observed in that system. Over the past several decades, mathematical models have been employed frequently in the oculomotor field, and their use has contributed greatly to our understanding of how information flows through the implicated brain regions. However, the existing analyses of oculomotor neural discharges have not taken advantage of the power of optimization algorithms that have been developed for system identification purposes. In this article, we employ these techniques to specifically investigate the “burst generator” in the brainstem that drives saccadic eye movements. The discharge characteristics of a specific class of neurons, inhibitory burst neurons (IBNs) that project monosynaptically to ocular motoneurons, are examined. The discharges of IBNs are analyzed using different linear and nonlinear equations that express a neuron's firing frequency and history (i.e., the derivative of frequency), in terms of quantities that describe a saccade trajectory, such as eye position, velocity, and acceleration. The variance accounted for by each equation can be compared to choose the optimal model. The methods we present allow optimization across multiple saccade trajectories simultaneously. We are able to investigate objectively how well a specific equation predicts a neuron's discharge pattern as well as whether increasing the complexity of a model is justifiable. In addition, we demonstrate that these techniques can be used both to provide an objective estimate of a neuron's dynamic latency and to test whether a neuron's initial firing rate (expressed as an initial condition) is a function of a quantity describing a saccade trajectory (such as initial eye position).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: A "Multimode" or "switched" system is one that switches between various modes of operation. When a switch occurs from one mode to another, a discontinuity may result followed by a smooth evolution under the new regime. Characterizing the switching behavior of these systems is not well understood and, therefore, identification of multimode systems typically requires a preprocessing step to classify the observed data according to a mode of operation. A further consequence of the switched nature of these systems is that data available for parameter estimation of any subsystem may be inadequate. As such, identification and parameter estimation of multimode systems remains an unresolved problem. In this paper, we 1) show that the NARMAX model structure can be used to describe the impulsive-smooth behavior of switched systems, 2) propose a modified extended least squares (MELS) algorithm to estimate the coefficients of such models, and 3) demonstrate its applicability to simulated and real data from the Vestibulo-Ocular Reflex (VOR). The approach will also allow the identification of other nonlinear bio-systems, suspected of containing "hard" nonlinearities.
    Keywords: Life Sciences (General)
    Type: IEEE transactions on bio-medical engineering (ISSN 0018-9294); Volume 52; 3; 431-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...