ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    Keywords: Medical microbiology. ; Diseases. ; Bacteria. ; Medical Microbiology. ; Diseases. ; Bacteria.
    Description / Table of Contents: Introduction -- Evolution of type III secretion systems -- Transcriptional and post-transcriptional regulatory mechanisms controlling type III secretion -- Assembly of type III secretion machines -- Structure of the type III secretion needle complex -- Structure and assembly of filamentous structures associated with type III secretion machines -- Structure and function of the type III secretion-associated sorting platform -- Molecular organization and assembly of the protein export apparatus -- Export mechanisms and energy transduction in type III secretion machines -- Needle length control and substrate switching in type III secretion machines -- The tip complex: sensing the host cell -- Chaperones and targeting mechanisms. .
    Abstract: One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilize complex nanomachines to deliver bacterially encoded effector proteins into eukaryotic and prokaryotic target cells to modulate a variety of cellular functions for the pathogen’s benefit. These protein-delivery machines include the type III secretion system (T3SS), which is widespread in nature and encoded not only by bacteria pathogenic to vertebrates or plants, but also by bacteria that are symbiotic to plants or insects. Because they are essential virulence factors for many important human pathogens, these systems are emerging as a prime target for the development of new-generation, anti-infective drugs. This book reviews our current understanding of these intriguing injection machines as well as of the closely related T3SS that serves in flagella assembly. Individual chapters focus on regulation, assembly, structure, and function of the type III secretion machine and on the evolution of the secreted effector proteins. Given its scope, this book will appeal to a broad readership, including researchers and teachers in the fields of infectious diseases, host pathogen interactions, plant and animal pathogenesis, and symbiosis.
    Type of Medium: Online Resource
    Pages: VIII, 230 p. 1 illus. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030521233
    Series Statement: Current Topics in Microbiology and Immunology, 427
    DDC: 616.9041
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 17 (2001), S. 53-86 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The bacterial pathogen Salmonella enterica has evolved a very sophisticated functional interface with its vertebrate hosts. At the center of this interface is a specialized organelle, the type III secretion system, that directs the translocation of bacterial proteins into the host cell. Salmonella spp. encode two such systems that deliver a remarkable array of bacterial proteins capable of modulating a variety of cellular functions, including actin cytoskeleton dynamics, nuclear responses, and endocytic trafficking. Many of these bacterial proteins operate by faithful mimicry of host proteins, in some cases representing the result of extensive molecular tinkering and convergent evolution. The coordinated action of these type III secreted proteins secures the replication and survival of the bacteria avoiding overt damage to the host. The study of this remarkable pathogen is not only illuminating general paradigms in microbial pathogenesis but is also providing valuable insight into host cell functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 12 (1996), S. 221-255 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract A taxonomically diverse group of bacterial pathogens have evolved a variety of strategies to subvert host-cellular functions to their advantage. This often involves two-way biochemical interactions leading to responses in both the pathogen and host cell. Central to this interaction is the function of a specialized protein secretion system that directs the export and/or translocation into the host cells of a number of bacterial proteins that can induce or interfere with host-cell signal transduction pathways. The understanding of these bacterial/host-cell interactions will not only lead to novel therapeutic approaches but will also result in a better understanding of a variety of basic aspects of cell physiology and immunology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A central feature of Salmonella pathogenicity is the bacterium's ability to enter into non-phagocytic cells. Bacterial internalization is the consequence of cellular responses characterized by Cdc42- and Rac-dependent actin cytoskeleton rearrangements. These responses are triggered by the co-ordinated function of bacterial proteins delivered into the host cell by a specialized protein secretion system termed type III. We report here that SopB, a Salmonella inositol polyphosphatase delivered to the host cell by this secretion system, mediates actin cytoskeleton rearrangements and bacterial entry in a Cdc42-dependent manner. SopB exhibits overlapping functions with two other effectors of bacterial entry, the Rho family GTPase exchange factors SopE and SopE2. Thus, Salmonella strains deficient in any one of these proteins can enter into cells at high efficiency, whereas a strain lacking all three effectors is completely defective for entry. Consistent with an important role for inositol phosphate metabolism in Salmonella-induced cellular responses, a catalytically defective mutant of SopB failed to stimulate actin cytoskeleton rearrangements and bacterial entry. Furthermore, bacterial infection of intestinal cells resulted in a marked increase in Ins(1,4,5,6)P4, a consumption of InsP5 and the activation of phospholipase C. In agreement with the in vivo findings, purified SopB specifically dephosphorylated InsP5 to Ins(1,4,5,6)P4in vitro. Surprisingly, the inositol phosphate fluxes induced by Salmonella were not caused exclusively by SopB. We show that the SopB-independent inositol phosphate fluxes are the consequence of the SopE-dependent activation of an endogenous inositol phosphatase. The ability of Salmonella to stimulate Rho GTPases signalling and inositol phosphate metabolism through alternative mechanisms is an example of the remarkable ability of this bacterial pathogen to manipulate host cellular functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Our laboratories have independently identified a gene in Salmonella choleraesuis and Salmonella typhimurium that is necessary for efficient adherence and entry of these organisms into cultured epithelial cells. Introduction of a mutated gene into several Salmonella strains belonging to different serotypes rendered these organisms deficient for adherence and invasion of cultured cells. This effect was most pronounced in the host-adapted serotypes Salmonella gallinarum, S. choleraesuis, and Salmonella typhi. The nucleotide sequence of this gene, which we have termed invH, encodes a predicted 147-amino-acid polypeptide containing a signal sequence. The InvH predicted polypeptide is highly conserved in S. typhimurium and S. choleraesuis, differing at only three residues. The invH gene was expressed in Escherichia coli using a T7 RNA polymerase expression system and a polypeptide of ∼16000 molecular weight was observed, in agreement with the predicted size of its gene product. Upon fractionation, the expressed polypeptide was localized in the bacterial membrane fraction. Southern and colony hybridization analyses indicated that the invH gene is present in all Salmonella strains tested (91 strains belonging to 37 serotypes) with the exception of strains of Salmonella arizonae. No homologous sequences were detected in Yersinia, Shigella, Proteus, and several strains of enteroinvasive and enteropathogenic E. coli. Downstream from the S. choleraesuis (but not S. typhimurium) invH gene, a region with extensive homology to the insertion sequence IS3 was detected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Molecular microbiology 24 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The ability of Salmonella typhimurium to interact with host cells is largely dependent on the function of a type III protein-secretion system encoded at centisome 63 of its chromosome. We have shown here that two targets of this protein-secretion system, SipB and SipC, are translocated into cultured intestinal Henle-407 cells. Translocation required the function of the type III secretion apparatus, as an S. typhimurium strain carrying a mutation in invA, which encodes an essential component of this system, failed to translocate the Sip proteins. Null mutations in the genes encoding SipB, SipC or SipD, prevented protein translocation, indicating that these proteins are involved in the translocation process. In contrast, mutations in sipA and sptP, which also encode secreted proteins, did not interfere with the translocation of SipC, indicating that only a subset of targets of the type III secretion system act as translocases. Externally or internally localized bacteria could direct protein translocation into Henle-407 cells as this process occurred in the presence of cytochalasin D at a concentration that prevented bacterial entry, or in the presence of gentamicin added shortly after bacterial internalization at a concentration that killed extracellular Salmonella. These results indicate that protein translocation into host cells may be a universal function of all type III secretion systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Exposure of macrophages to lipopolysaccharide (LPS) leads to production of the pro-inflammatory cytokine, tumour necrosis factor alpha (TNF-α). Previous studies have suggested that pathogenic Yersinia spp. inhibit LPS-mediated production of TNF-α in macrophages, and that one of the Yop proteins secreted by the plasmid-encoded type III pathway is required for this activity. We found that TNF-α production was inhibited when J774A.1 murine macrophages were infected with wild-type Y. pseudotuberculosis but not with an isogenic ysc mutant defective for Yop secretion. We inactivated multiple yop genes to identify which of these factors are required for the inhibition of TNF-α production. A mutant unable to express yopJ was defective for the inhibition of TNF-α production. Production of TNF-α is regulated at the transcriptional and translational levels by several mitogen-activated protein (MAP) kinases. The MAP kinases p38 and JNK underwent sustained activation in macrophages infected with the yopJ mutant. Conversely, p38 and JNK were downregulated in macrophages infected with the wild-type strain. The ability of the yopJ mutant to downregulate p38 and JNK and to inhibit production of TNF-α was restored by the expression of yopJ+in trans. Therefore, YopJ is required for Y. pseudotuberculosis to downregulate MAP kinases and inhibit the production of TNF-α in macrophages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 27 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Salmonella typhimurium protein tyrosine phosphatase SptP is a target of the centisome 63 type III protein secretion system. This system is essential for the interaction of these bacteria with host cells. We have shown here by a combination of biochemical and microscopy techniques that S. typhimurium directs the translocation of SptP into cultured epithelial cells. Translocation requires the function of the secreted proteins, SipB, SipC and SipD, as strains carrying mutations in any of the genes encoding these proteins fail to translocate SptP. Microinjection of purified GST–SptP into cultured cells results in the disruption of the actin cytoskeleton and the disappearance of stress fibres. These changes are reversible, as microinjected cells regain the normal appearance of their actin cytoskeleton upon prolonged incubation. Microinjection of the catalytically inactive GST–SptP(C481S) protein results in changes similar to those induced by the wild-type toxin. Furthermore, microinjection of a fusion protein between GST and the first 285 amino acids of SptP also leads to identical disruption of the host cell actin cytoskeleton, indicating that the amino-terminal half of SptP is sufficient to mediate this effect. However, microinjection of a fusion protein between GST and the last 259 amino acids of SptP also disrupted the normal appearance of the cytoskeleton. These results support the hypothesis that SptP is an effector protein arranged in modular domains that may co-operate with each other to exert related functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A number of bacterial pathogens have evolved sophisticated strategies to subvert host-cell signal-transduction pathways for their own benefit. These bacteria produce and export proteins capable of specific interactions with key mammalian cell regulatory molecules in order to derail the normal functions of the cells. In this study, we describe the identification of a modular effector protein secreted by the bacterial pathogen Salmonella typhimurium that is required for its full display of virulence. Sequence analysis revealed that a carboxy-terminal region of this protein, which we have termed SptP, is homologous to the catalytic domains of protein tyrosine phosphatases. Purified SptP protein efficiently dephosphorylated peptide substrates phosphorylated on tyrosine. An engineered mutant of SptP in which a critical Cys residue in the catalytic domain was changed to Ser was devoid of phosphatase activity, indicating a catalytic mechanism similar to that of other tyrosine phosphatases. In addition, an amino-terminal region of SptP exhibited sequence similarity to the ribosyltransferase exo-enzyme S from Pseudomonas aeruginosa and the cytotoxin YopE from Yersinia spp. The modular nature of this effector protein may allow multiple interactions with host-cell signalling functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...