ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: RID=""ID="" Communicated by P. HallAbstract:The absolute/convective instability of two-dimensional wakes forming behind a flat plate and near the trailing-edge of a thin wedge-shaped aerofoil in an incompressible/compressible fluid is investigated. The mean velocity profiles are obtained by solving numerically the classical compressible boundary-layer equations with a negative pressure gradient for the flat plate case, and the incompressible triple-deck equations for a thin wedge-shaped trailing-edge. In addition for a Joukowski aerofoil the incompressible mean boundary-layer flow in the vicinity of the trailing-edge is also calculated by solving the interactive boundary-layer equations. A linear stability analysis of the boundary-layer profiles shows that a pocket of absolute instability occurs downstream of the trailing-edge with the extent of the instability region increasing with more adverse pressure gradients. The region of absolute instability persists along the near-wake axis, while the majority of the wake is convectively unstable. For a thin wedge-shaped trailing-edge in an incompressible fluid, a similar stability analysis of the velocity profiles obtained via a composite expansion, also shows the occurrence of absolute instability behind the trailing-edge for a wedge angle greater than a critical value. For increasing values of the wedge angle and for thicker aerofoils, separation takes place near the trailing-edge and the extent of absolute instability increases. Calculations also show that for insulated plates compressibility has a stabilizing effect but cooling the wall destabilizes the flow unlike wall heating.}
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...