ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 39 (1992), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . We have characterized a novel, temperature-sensitive mutation affecting motility in Tetrahymena thermophila. Mutants grew and divided normally at the restrictive temperature (38°C), but became nonmotile. Scanning electron microscopic analysis indicated that nonmotile mutants contained the normal number of cilia and that the cilia were of normal length. Transmission electron microscopic analysis indicated that axonemes isolated from nonmotile mutants lacked outer dynein arms, so the mutation was named oad I (outer arm defficient). Motile mutants shifted to 38° C under conditions that prevent cell growth and division (starvation) remained motile suggesting that once assembled into axonemes at the permissive temperature (28° C) the outer arm dyneins remain functional at 38° C. Starved, deciliated mutants regenerated a full complement of functional cilia at 38° C, indicating that the mechanism that incorporates the outer arm dynein into developing axonemes is not affected by the oad I mutation. Starved, nonmotile mutants regained motility when shifted back to 28° C, but not when incubated with cycloheximide. We interpret these results to rule out the hypothesis that the oad I mutation affects the site on the microtubules to which the outer arm dyneins bind. Axonemes isolated from mutants grown for one generation at 38° C had a mean of 6.0 outer arm dyneins, and axonemes isolated from mutants grown for two generations at 38° C had a mean of 3.2 outer arm dyneins. Taken together, these results indicate that the oad I mutation affects the synthesis of outer arm dyneins in Tetrahymena.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 17 (1978), S. 5705-5713 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 20 (1981), S. 3828-3833 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 21 (1982), S. 1772-1781 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 15 (1976), S. 750-755 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 15 (1976), S. 1249-1256 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 45 (1998), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In Tetrahymena, as in other ciliated protozoans, a transcriptionally active, “somatic” macronucleus develops from a transcriptionally inactive “germline” micronucleus after conjugation. The process of development involves elimination of germline DNA segments at thousands of locations in the genome. The characterization of one of these segments in Tetrahymena thermophila is described here. This micronucleus-specific DNA has been identified by comparing the sequence of the corresponding micronuclear and macro-nuclear regions. The micronucleus-specific DNA is over 1 kb long, is AT-rich and has TTT direct repeats at its termini. At one end of the micronuclear sequence there is a 130 bp duplication, and at the other end there are several related repeats of a 13-mer. Short G-rich sections are found in the middle of the eliminated DNA, as well as on one side of the rearrangement junction. Short G-rich segments are also detectable in three previously described micronucleus-specific sequences. The micronuclear sequence described here is a member of a repeat family. Cross-hybridizing sequences are also detectable in some other Tetrahymena species. The distribution of cross-hybridizing sequences among related species is not consistent with the phylogenetic tree.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 20 (1973), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The macro- and micronucleus of Tetrahymena pyriformis are formed from a common diploid synkaryon during conjugation. Shortly after the 2nd postzygotic division, distinct morphologic and physiologic differences develop between the 2 nuclei. Micronuclei remain small, presumably diploid, and electronmicroscopic observations indicate that micronuclear DNA is contained in a dense, fibrous, chromosome-like coil. Macronuclei contain considerably more DNA than micronuclei, and the DNA of the macronucleus is found largely in the chromatin bodies typical of ciliate nuclei. The functional differences between macro- and micronuclei in vegetative cells also are striking. The template activity of DNA in the micronucleus is highly restricted compared to that in the macronucleus. Micronuclei synthesize and contain little RNA, and do not contain either nucleoli or ribonucleoprotein granules. Macronuclei, on the other hand, synthesize and contain large amounts of RNA and have many nucleoli and ribonucleoprotein granules. Macro- and micronuclei also have distinct differences in the timing of DNA synthesis during the cell cycle and in the timing and mechanism of nuclear division. Finally, during conjugation the macronucleus becomes pycnotic and disappears while the micronucleus undergoes meiosis and fertilization, ultimately giving rise to new macro- and new micronuclei. In short, the macro- and micronuclei of Tetrahymena provide an excellent system for studying the molecular mechanisms by which the same (or related) genetic information is maintained in different structural and functional states.Methods have been devised to isolate and purify macro- and micronuclei of Tetrahymena in the hope of correlating differences in the nucleoprotein composition of these nuclei with differences in their structure and function. The DNAs of macro- and micronuclei have been found to differ markedly in their content of a methylated base, N6-methyl adenine, and major differences in the histones of the 2 nuclei have been observed. Macronuclei contain histones similar to those found in vertebrate nuclei, while 2 major histone fractions seem to be missing in micronuclei. In addition, histone fraction F2A1 which is found in multiple, acetylated forms in macronuclei, is present only as a single, unacetylated form in micronuclei.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Chromosoma 67 (1978), S. 1-20 
    ISSN: 1432-0886
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The organization of the 5S genes in macro- and micronuclei of Tetrahymena pyriformis was studied using restriction endonucleases. After complete digestion of macronuclear DNA with BamH-I or Hpa I, 5S RNA hybridized to a DNA fragment of approximately 280 base pairs (bp). When macronuclear DNA was only partially digested with these enzymes, hybridization with 32P-5S RNA demonstrated an oligomeric series with a spacing of 280 bp. These results indicate that the 5S genes are tandemly repeated in macronuclei and that the repeating unit is 280 bp (or 180,000 daltons). Since 5S RNA is 120 nucleotides, we conclude that the 5S repeat units contain a 120 bp transcribed region and a 160 bp spacer region. When macronuclear DNA was digested with Eco RI, Bgl I, or Eco RI + Bgl I, 5S RNA hybridized to DNA of molecular weight 3–4×106, suggesting that these enzymes do not cleave within a 5S repeat. These 3–4×106 dalton fragments define the maximum size of an average cluster of 5S repeated units. Assuming the size of the 5S repeat to be 0.18×106 daltons, there are about 15–20 5S repeats per average tandem cluster, and since there are 350 5S-genes per haploid genome, there must be approximately 15–20 tandem arrays. Results obtained using micronuclear DNA suggest that organization of the 5S-genes is very similar in macro- and micronuclei. Macronuclear rRNA genes are extracnromosomal palindromic dimers. In contrast, 5S genes in Tetrahymena were found to be integrated within the genomes of both macro- and micronuclei and not linked to the rRNA genes. Moreover, it is unlikely that they are palindromes; rather they appear to be tandemly repeated in “head-to-tail” linkages. Thus, the organization of the 5S genes in Tetrahymena is similar to that of higher eukaryotes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Chromosoma 48 (1974), S. 1-18 
    ISSN: 1432-0886
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Macro- and micronuclei were isolated from Tetrahymena pyriformis (Syngen 1, strain WH-6) and their DNAs compared by isopycnic centrifugation in neutral and alkaline CsCl, by analysis of thermal denaturation properties and by molecular hybridization. Unlike the situation observed in Stylonychia the buoyant densities and thermal denaturation patterns of Tetrahymena macro- and micronuclear DNAs were virtually identical—the only observable differences bordering on the limits of resolution of these techniques. DNA was isolated from the two nuclei which had been labelled with different radioactive isotopes (i.e. 14C-thymidine and 3H-thymidine), and the renaturation kinetics of mixtures of macro- and micronuclear DNA were examined using a single-strand specific deoxyribonuclease (S1). Renaturation kinetics obtained using varying ratios of macro- and micronuclear DNA suggested that 80–90% of the sequences present in micronuclei were present in similar amounts in macronuclei. However, careful analyses of the renaturation kinetics indicate that approximately 10–20% of the sequences found in micronuclei are probably absent in macronuclei, and that most of these sequences are probably moderately repetitive (100 copies per genome or less). These findings place severe constraint on possible models concerning the structure of the Tetrahymena macronucleus, and are very different from the situation observed in Stylonychia where it has been suggested that only a small percentage of the sequences in micronuclei are present in significant amounts in macronuclei. Nonetheless, these results along with those in Stylonychia can be taken as an indication that the loss or under-replication of some DNA sequences accompanies macronuclear differentiation in ciliates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...