ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 7 (1980), S. 17-40 
    ISSN: 1432-1017
    Keywords: Muscle thermodynamics ; Stiffness ; Electrostatic force ; Van der Waals force swelling ; Polyvinylpyrrolidone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The elastic behavior of mechanically skinned skeletal muscle fibers in relaxing solution is modelled using equations developed by Flory (1953) for the elasticity of non-biological polymers. Mechanically, the relaxed skinned fiber is considered to be a semi-crystalline network of inextensible polymer chains, which are periodically cross-linked and which are bathed in an aqueous medium. We consider (1) configurational elastic forces in the network, (2) entropic forces due to mixing of polymer and water, (3) electrostatic forces due to fixed charges on the muscle proteins and mobile charges in the bathing solution, and (4) compressive forces due to large colloids in the bathing solution. Van der Waals forces are not considered since calculations show that they are probably negligible under our conditions. We derive an expression which relates known quantities (ionic strength, osmotic compressive pressure, and fiber width), experimentally estimated quantities (fixed charge density and volume fraction of muscle proteins), and derived quantities (concentration of cross-links and a parameter reflecting the interaction energy between protein and water). The model was tested by comparison with observed changes in skinned fiber width under a variety of experimental conditions which included changes in osmotic compressive pressure, pH, sarcomere length, and ionic strength. Over a wide range of compressive pressure (0–36 atm) the theory predicted the nonlinear relation between fiber width and logarithm of pressure. The direction and magnitude of the decrease in width when pH was decreased to 4 could be modelled asssuming the fixed charge density on the protein network was 0.34 moles of electrons per liter protein, a value in accordance with the estimates of others. The relation between width and sarcomere length over the complete range of compressive pressures could be modelled with the assumption that the number of cross-links increases somewhat with sarcomere length. Changes of width with ionic strength were modelled assuming that increasing salt concentration both increased the electrostatic shielding of fixed charges and decreased the number of cross-links. The decrease of fiber width in 1% glutaraldehyde was modelled by assuming that the concentration of crosslinks increased by some 10%. The theory predicted the order of magnitude but not the detailed shape of the passive tension-length relation which may indicate that, as with non-biological polymers, the theory does not adequately describe the behavior of semi-crystalline networks at high degrees of deformation. In summary, the theory provides a semiquantitative approach to an understanding of the nature and relative magnitudes of the forces underlying the mechanical behavior of relaxed skinned fibers. It indicates, for instance, that when fibers are returned to near their in vivo size with 3% PVP, the forces in order of their importance are: ¦ elastic forces ¦ ∼ ¦ entropic forces 〉 ¦ electrostatic forces ¦ ∼ ¦ osmotic compressive forces ¦.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 16 (1995), S. 1-10 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary 2,3-butanedione 2-monoxime (BDM, 3–30 mm) decreased twitch force of intact ventricular trabeculae isolated from 19-day embryonic chick hearts in a dose-dependent manner. The responses to BDM were rapid and reversible. In an attempt to determine the cellular basis for the inhibitory effect of BDM, experiments were carried out on skinned muscle fibres and isolated myocytes. In trabeculae skinned with Triton X-100, BDM depressed maximum calcium activated force (Fmax) with an IC50 of 14 mm. At 3 mm BDM, the proportional decrease in twitch force in intact tissue was similar to that of Fmax in skinned tissue. At higher BDM concentrations (10 and 30 mm), however, the proportional decrease in twitch force was greater than that of Fmax. BDM (up to 10 mm) had no effect on the normalized force-pCa relationship. In saponin-skinned preparations, BDM (3 and 30 mm) released calcium from the fully loaded sarcoplasmic reticulum to a slightly greater extent in the absence of calcium (pCa 8.5) than in the presence of a fixed level of free calcium (pCa 5.5). Whole cell patch clamping of freshly isolated chick myocytes demonstrated that BDM caused a dose-dependent decrease in the T-and L-type calcium current. Therefore, at low BDM concentrations (3 mm), the decrease in twitch force can be ascribed predominantly to depression of the contractile apparatus while, at higher concentrations of BDM, there is an additional inhibitory effect of BDM on excitation-contraction coupling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1980-01-01
    Print ISSN: 0175-7571
    Electronic ISSN: 1432-1017
    Topics: Biology , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...