ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 15 (1943), S. 605-606 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-15
    Description: During the initial freezing of the tropical ocean on Snowball Earth, the first ice to form would be sea ice, which contains salt within inclusions of liquid brine. At temperatures below −23°C, significant amounts of the salt begin to crystallize, with the most abundant salt being hydrohalite (NaCl·2H 2 O.) These crystals scatter light, increasing the ice albedo. In this paper we present field measurements of the albedo of cold sea ice and laboratory measurements of hydrohalite precipitation. Precipitation of salt within brine inclusions was observed on windswept bare ice of McMurdo Sound at the coast of Antarctica (78°S) in early austral spring. Salinity and temperature were measured in ice cores. Spectral albedo was measured on several occasions during September and October. The albedo showed a gradual increase with decreasing temperature, consistent with salt precipitation. Laboratory examination of thin sections from the ice cores showed that the precipitation process exhibits hysteresis, with hydrohalite precipitating over a range of temperatures between −28°C and −35°C but dissolving at about −23°C. The causes of the hysteresis were investigated in experiments on laboratory-grown sea ice with different solute mixtures. All mixtures showed hysteresis, suggesting that it may be an inherent property of hydrohalite precipitation within brine inclusions rather than being due to biological macromolecules or interactions between various salts in seawater. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-22
    Description: Samples of snow on sea ice were collected in springtime of the six years 2008–2013 in the region between Greenland, Ellesmere Island, and the North Pole (82-89°N, 0-100°W). The meltwater was passed through filters, whose spectral absorption was then measured to determine the separate contributions by black carbon (BC) and other light-absorbing impurities. The median mixing ratio of BC across all years’ samples was 4±3 ng g −1 , and the median fraction of absorption due to non-BC absorbers was 36±11%. Variances represent both spatial and interannual variability; there was no interannual trend in either variable. The absorption Ångström exponent, however, decreased with latitude, suggesting a transition from dominance by biomass-burning sources in the south to an increased influence by fossil-fuel-burning sources in the north, consistent with earlier measurements of snow in Svalbard and at the North Pole.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-23
    Description: Key Points Liberal values in rich democracies are threatened by population growth in poor countries. The most likely repressive policy response will be barriers to immigration. Fertility reduction in high-fertility countries requires increased access to contraception.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-17
    Description: During the Snowball Earth events of the Neoproterozoic, tropical regions of the ocean could have developed a precipitated salt lag deposit left behind by sublimating sea ice. The major salt would have been hydrohalite, NaCl•2H 2 O. The crystals in such a deposit can be small and highly scattering, resulting in an allwave albedo similar to that of snow. The snow-free sea ice from which such a crust could develop has a lower albedo, around 0.5, so the development of a crust would substantially increase the albedo of tropical regions on Snowball Earth. Hydrohalite crystals are much less absorptive than ice in the near-infrared part of the solar spectrum, so their presence at the surface would increase the overall albedo as well as altering its spectral distribution. In this paper, we use laboratory measurements of the spectral albedo of a hydrohalite lag deposit, in combination with a radiative transfer model, to infer the inherent optical properties of hydrohalite as functions of wavelength. Using this result, we model mixtures of hydrohalite and ice representing both artificially created surfaces in the laboratory and surfaces relevant to Snowball Earth. The model is tested against sequences of laboratory measurements taken during the formation and the dissolution of a lag deposit of hydrohalite. We present a parameterization for the broadband albedo of cold, sublimating sea ice as it forms and evolves a hydrohalite crust, for use in climate models of Snowball Earth. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-17
    Description: The ice-albedo feedback mechanism likely contributed to global glaciation during the Snowball Earth events of the Neoproterozoic era (1 Ga to 544 Ma). This feedback results from the albedo contrast between sea ice and open ocean. Little is known about the optical properties of some of the possible surface types that may have been present, including sea ice that is both snow-free and cold enough for salts to precipitate within brine inclusions. A proxy surface for such ice was grown in a freezer laboratory using the single salt NaCl and kept below the eutectic temperature (−21.2°C) of the NaCl – H 2 O binary system. The resulting ice cover was composed of ice and precipitated hydrohalite crystals (NaCl · 2H 2 O). As the cold ice sublimated, a thin lag-deposit of salt formed on the surface. To hasten its growth in the laboratory, the deposit was augmented by addition of a salt-enriched surface crust. Measurements of the spectral albedo of this surface were carried out over 90 days as the hydrohalite crust thickened due to sublimation of ice, and subsequently over several hours as the crust warmed and dissolved, finally resulting in a surface with puddled liquid brine. The all-wave solar albedo of the subeutectic crust is 0.93 (in contrast to 0.83 for fresh snow and 0.67 for melting bare sea ice). Incorporation of these processes into a climate model of Snowball Earth will result in a positive salt-albedo feedback operating between −21°C and −36°C. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-11
    Description: The reduction of snow spectral albedo by black carbon (BC) and mineral dust, both alone and in combination, is computed using radiative-transfer modeling. Broadband albedo is shown for mass fractions covering the full range from pure snow to pure BC and pure dust, and for snow grain radii from 5 µm to 2500 µm, to cover the range of possible grain sizes on planetary surfaces. Parameterizations are developed for opaque homogeneous snowpacks for three broad bands used in GCMs, and several narrower bands. They are functions of snow grain radius and the mass fraction of BC and/or dust, and are valid up to BC content of 10 ppm, needed for highly polluted snow. A change of solar zenith angle can be mimicked by changing grain radius. A given mass fraction of BC causes greater albedo reduction in coarse-grained snow; BC and grain radius can be combined into a single variable to compute the reduction of albedo relative to pure snow. The albedo reduction by BC is less if the snow contains dust, a common situation on mountain glaciers and in agricultural and grazing lands. Measured absorption spectra of mineral dust are critically reviewed as a basis for specifying dust properties for modeling. The effect of dust on snow albedo at visible wavelengths can be represented by an “equivalent BC” amount, scaled down by a factor of about 200. Dust has little effect on the near-IR albedo because the near-IR albedo of pure dust is similar to that of pure snow.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    Publication Date: 2015-01-28
    Description: Historical examples of demographic change, in China, Italy, Nigeria, Utah, Easter Island, and elsewhere, together with simple mathematics and biological principles, show that stabilizing world population before it is limited by food supply will be more difficult than is generally appreciated. United Nations population projections are wrong because they assume, in spite of the absence of necessary feedbacks, that all nations will converge rapidly to replacement-level fertility and thereafter remain at that level. Education of women and provision of contraceptives have caused dramatic reductions in fertility, but many groups, including some that are well-educated, maintain high fertility. Small groups with persistent high fertility can grow to supplant low-fertility groups, resulting in continued growth of the total population. The global average fertility rate could rise even if each country's fertility rate is falling. In some low-fertility European countries where deaths exceed births, the population continues to grow because of immigration. Producing more than two offspring is normal for all animal species with stable populations, because their populations are limited by resources or predation rather than birth control. It may therefore be appropriate to view the growth of human population as the result not of excess fertility but rather of excess food.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-10-08
    Description: The existence of photosynthetic eukaryotic algae during the so-called Snowball Earth events presents a conundrum. If thick ice covered the oceans, where could such life persist? Here we explore the possibility that photosynthetic life persisted at the end of long narrow seas, analogous to the modern-day Red Sea. In this first analytical model, we test the ability of the global sea glacier to penetrate a Red Sea analogue under climatic conditions appropriate during a Snowball Earth event. We find the Red Sea is long enough to provide a refugium only if certain ranges of climatic conditions are met. These ranges would likely expand if the restrictive effect of a narrow entrance strait is also considered.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-16
    Description: [1]  Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr -1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by a factor of almost three. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m -2 with 90% uncertainty bounds of (+0.08, +1.27) W m -2 . Total direct forcing by all black carbon sources, without subtracting the pre-industrial background, is estimated as +0.88 (+0.17, +1.48) W m -2 . Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m -2 with 90% uncertainty bounds of +0.17 to +2.1 W m -2 . Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m -2 , is the second most important human emission in terms of its climate-forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil-fuel and biofuel) have an industrial-era climate forcing of +0.22 (-0.50 to +1.08) W m -2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all emissions from these sources would reduce net climate forcing ( i . e ., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all black-carbon-rich sources becomes slightly negative (-0.06 W m -2 with 90% uncertainty bounds of -1.45 to +1.29 W m -2 ). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...