ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-06-18
    Description: The behavior of immature cortical networks in vivo remains largely unknown. Using multisite extracellular and patch-clamp recordings, we observed recurrent bursts of synchronized neuronal activity lasting 0.5 to 3 seconds that occurred spontaneously in the hippocampus of freely moving and anesthetized rat pups. The influence of slow rhythms (0.33 and 0.1 hertz) and the contribution of both gamma-aminobutyric acid A-mediated and glutamate receptor-mediated synaptic signals in the generation of hippocampal bursts was reminiscent of giant depolarizing potentials observed in vitro. This earliest pattern, which diversifies during the second postnatal week, could provide correlated activity for immature neurons and may underlie activity-dependent maturation of the hippocampal network.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leinekugel, Xavier -- Khazipov, Rustem -- Cannon, Robert -- Hirase, Hajime -- Ben-Ari, Yehezkel -- Buzsaki, Gyorgy -- FO6 TW02290/TW/FIC NIH HHS/ -- N0T 43994/PHS HHS/ -- NS 34994/NS/NINDS NIH HHS/ -- NS 43157/NS/NINDS NIH HHS/ -- RR09754/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2049-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INMED, Institut National de la Sante et de la Recherche Medicale (INSERM) U29, Avenue de Luminy, Boite Postale 13, 13273 Marseille Cedex 09, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12065842" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Evoked Potentials ; Hippocampus/*physiology ; Neurons/*physiology ; Patch-Clamp Techniques ; Pyramidal Cells/physiology ; Rats ; Rats, Wistar ; Receptors, GABA-A/physiology ; Receptors, Glutamate/physiology ; Synapses/physiology ; Synaptic Transmission ; gamma-Aminobutyric Acid/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-05-15
    Description: Pyramidal cells in the CA1 hippocampal region displayed transient network oscillations (200 hertz) during behavioral immobility, consummatory behaviors, and slow-wave sleep. Simultaneous, multisite recordings revealed temporal and spatial coherence of neuronal activity during population oscillations. Participating pyramidal cells discharged at a rate lower than the frequency of the population oscillation, and their action potentials were phase locked to the negative phase of the simultaneously recorded oscillatory field potentials. In contrast, interneurons discharged at population frequency during the field oscillations. Thus, synchronous output of cooperating CA1 pyramidal cells may serve to induce synaptic enhancement in target structures of the hippocampus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buzsaki, G -- Horvath, Z -- Urioste, R -- Hetke, J -- Wise, K -- NS02383/NS/NINDS NIH HHS/ -- NS27058/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1992 May 15;256(5059):1025-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1589772" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Behavior, Animal/physiology ; Cell Membrane/physiology ; Electrophysiology ; Hippocampus/*physiology ; Interneurons/physiology ; Male ; Neurons/physiology ; Periodicity ; Pyramidal Tracts/physiology ; Rats ; Sleep/physiology ; Synapses/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-09-06
    Description: A long-standing conjecture in neuroscience is that aspects of cognition depend on the brain's ability to self-generate sequential neuronal activity. We found that reliably and continually changing cell assemblies in the rat hippocampus appeared not only during spatial navigation but also in the absence of changing environmental or body-derived inputs. During the delay period of a memory task, each moment in time was characterized by the activity of a particular assembly of neurons. Identical initial conditions triggered a similar assembly sequence, whereas different conditions gave rise to different sequences, thereby predicting behavioral choices, including errors. Such sequences were not formed in control (nonmemory) tasks. We hypothesize that neuronal representations, evolved for encoding distance in spatial navigation, also support episodic recall and the planning of action sequences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570043/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570043/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pastalkova, Eva -- Itskov, Vladimir -- Amarasingham, Asohan -- Buzsaki, Gyorgy -- MH54671/MH/NIMH NIH HHS/ -- NS34994/NS/NINDS NIH HHS/ -- R01 MH054671/MH/NIMH NIH HHS/ -- R01 MH054671-10/MH/NIMH NIH HHS/ -- R01 NS034994/NS/NINDS NIH HHS/ -- R01 NS034994-11/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1322-7. doi: 10.1126/science.1159775.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772431" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Behavior, Animal ; Choice Behavior ; Cues ; Hippocampus/*cytology/*physiology ; Interneurons/physiology ; Male ; Maze Learning ; *Memory ; *Mental Recall ; Models, Neurological ; Motor Activity ; Pyramidal Cells/*physiology ; Rats ; Rats, Long-Evans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-08-11
    Description: Many neurological and psychiatric diseases are associated with clinically detectable, altered brain dynamics. The aberrant brain activity, in principle, can be restored through electrical stimulation. In epilepsies, abnormal patterns emerge intermittently, and therefore, a closed-loop feedback brain control that leaves other aspects of brain functions unaffected is desirable. Here, we demonstrate that seizure-triggered, feedback transcranial electrical stimulation (TES) can dramatically reduce spike-and-wave episodes in a rodent model of generalized epilepsy. Closed-loop TES can be an effective clinical tool to reduce pathological brain patterns in drug-resistant patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berenyi, Antal -- Belluscio, Mariano -- Mao, Dun -- Buzsaki, Gyorgy -- MH54671/MH/NIMH NIH HHS/ -- NS074015/NS/NINDS NIH HHS/ -- NS34994/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 10;337(6095):735-7. doi: 10.1126/science.1223154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22879515" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Waves ; Cerebral Cortex/physiopathology ; *Deep Brain Stimulation ; Electric Stimulation ; Electrodes, Implanted ; Epilepsy, Absence/physiopathology/*therapy ; Feedback, Physiological ; Male ; Rats ; Rats, Long-Evans ; Thalamus/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buzsaki, Gyorgy -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):568-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA. buzsaki@axon.rutgers.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16040697" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Cues ; Electrophysiology ; Hippocampus/cytology/*physiology ; Interneurons/physiology ; Memory/*physiology ; Nerve Net/*physiology ; Neural Inhibition ; Neurons/*physiology ; Orientation/*physiology ; Perception/physiology ; Pyramidal Cells/*physiology ; Rats ; Space Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-06-26
    Description: Clocks tick, bridges and skyscrapers vibrate, neuronal networks oscillate. Are neuronal oscillations an inevitable by-product, similar to bridge vibrations, or an essential part of the brain's design? Mammalian cortical neurons form behavior-dependent oscillating networks of various sizes, which span five orders of magnitude in frequency. These oscillations are phylogenetically preserved, suggesting that they are functionally relevant. Recent findings indicate that network oscillations bias input selection, temporally link neurons into assemblies, and facilitate synaptic plasticity, mechanisms that cooperatively support temporal representation and long-term consolidation of information.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buzsaki, Gyorgy -- Draguhn, Andreas -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1926-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, Newark, NJ 07102, USA. buzsaki@axon.rutgers.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218136" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; Brain/*physiology ; Cerebral Cortex/physiology ; Electroencephalography ; Humans ; Learning ; Membrane Potentials/physiology ; Nerve Net/*physiology ; Neuronal Plasticity ; Neurons/*physiology ; Synapses/physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buzsaki, Gyorgy -- England -- Nature. 2013 May 30;497(7451):568-9. doi: 10.1038/497568a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719456" target="_blank"〉PubMed〈/a〉
    Keywords: Cognition/*physiology ; Hippocampus/*cytology/*physiology ; Humans ; *Memory, Episodic ; Space Perception/*physiology ; *Time ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-09-16
    Description: The organization of the hippocampus is generally thought of as a series of cell groups that form a unidirectionally excited chain, regulated by localized inhibitory circuits. With the use of in vivo intracellular labeling, histochemical, and extracellular tracing methods, a longitudinally widespread, inhibitory feedback in rat brain from the CA1 area to the CA3 and hilar regions was observed. This long-range, cross-regional inhibition may allow precise synchronization of population activity by timing the occurrence of action potentials in the principal cells and may contribute to the coordinated induction of synaptic plasticity in distributed networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sik, A -- Ylinen, A -- Penttonen, M -- Buzsaki, G -- New York, N.Y. -- Science. 1994 Sep 16;265(5179):1722-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8085161" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/ultrastructure ; Dendrites/ultrastructure ; Feedback ; Hippocampus/cytology/*physiology ; Interneurons/*physiology/ultrastructure ; Membrane Potentials ; *Neural Inhibition ; Neural Pathways ; Pyramidal Cells/*physiology/ultrastructure ; Rats ; Synapses/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-05-09
    Description: Although neuronal spikes can be readily detected from extracellular recordings, synaptic and subthreshold activity remains undifferentiated within the local field potential (LFP). In the hippocampus, neurons discharge selectively when the rat is at certain locations, while LFPs at single anatomical sites exhibit no such place-tuning. Nonetheless, because the representation of position is sparse and distributed, we hypothesized that spatial information can be recovered from multiple-site LFP recordings. Using high-density sampling of LFP and computational methods, we show that the spatiotemporal structure of the theta rhythm can encode position as robustly as neuronal spiking populations. Because our approach exploits the rhythmicity and sparse structure of neural activity, features found in many brain regions, it is useful as a general tool for discovering distributed LFP codes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agarwal, Gautam -- Stevenson, Ian H -- Berenyi, Antal -- Mizuseki, Kenji -- Buzsaki, Gyorgy -- Sommer, Friedrich T -- 1F32MH093048/MH/NIMH NIH HHS/ -- 337075/European Research Council/International -- MH-54671/MH/NIMH NIH HHS/ -- NS-034994/NS/NINDS NIH HHS/ -- NS074015/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2014 May 9;344(6184):626-30. doi: 10.1126/science.1250444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812401" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Hippocampus/cytology/*physiology ; Maze Learning ; Neurons/physiology ; Periodicity ; Rats ; Running ; Spatio-Temporal Analysis ; Synaptic Potentials/*physiology ; Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buzsaki, Gyorgy -- New York, N.Y. -- Science. 2015 Feb 6;347(6222):612-3. doi: 10.1126/science.aaa6505.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York University Neuroscience Institute, New York University Langone Center, New York, NY 10016, USA. gyorgy.buzsaki@nyumc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25657232" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Hippocampus/*physiology ; Maze Learning ; Pyramidal Cells/*physiology ; Rats ; Sensation/*physiology ; Space Perception/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...