ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2021-12-01
    Description: The Anarraaq clastic-dominated (CD) Zn-Pb-Ag deposit (Red Dog district, Alaska, USA) has an inferred mineral resource of 19.4 Mt at 14.4% Zn, 4.2% Pb, and 73 g/t Ag and is spatially associated with a separate ~1 Gt barite body. This study presents new cross sections and petrographic evidence from the Anarraaq area. The barite body, previously shown to have formed in a shallow subsurface environment akin to a methane cold seep, contains multiple generations of barite with locally abundant calcite masses, which are discordant to sedimentary laminae, and is underlain by an interval of massive pyrite containing abundant framboids and radiolarians. Calcite and pyrite are interpreted to have formed by methane-driven diagenetic alteration of host sediment at the sulfate-methane transition (SMT). The sulfide deposit contains two zones of Zn-Pb mineralization bounded by faults of unknown displacement. The dominant hydrothermal minerals are marcasite, pyrite, sphalerite, quartz, and galena. The presence of hydrothermal pseudomorphs after barite, early pyrite resembling diagenetic pyrite associated with the barite body, and hydrothermal quartz and sphalerite filling voids formed by dissolution of carbonate all suggest that host sediment composition and origin was similar to that of the barite body prior to hydrothermal mineralization. Rhenium-osmium isochron ages of Ikalukrok mudstone (339.1 ± 8.3 Ma), diagenetic pyrite (333.0 ± 7.4 Ma), and hydrothermal pyrite (334.4 ± 5.3 Ma) at Anarraaq are all within uncertainty of one another and of an existing isochron age (~338 Ma) for the Main deposit in the Red Dog district. This indicates that the Anarraaq deposit formed soon after sedimentation and that hydrothermal activity was approximately synchronous in the district. The initial Os composition of the Anarraaq isochrons (0.375 ± 0.019–0.432 ± 0.025) is consistent with contemporaneous seawater, indicating that a mantle source was not involved in the hydrothermal system. This study highlights the underappreciated but important role of early, methane-driven diagenetic processes in the paragenesis of some CD deposits and has important implications for mineral exploration.
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...