ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Eddy covariance was used to measure the net CO2 exchange (NEE) over ecosystems differing in land use (forest and agriculture) in Thuringia, Germany. Measurements were carried out at a managed, even-aged European beech stand (Fagus sylvatica, 70–150 years old), an unmanaged, uneven-aged mixed beech stand in a late stage of development (F. sylvatica, Fraxinus excelsior, Acer pseudoplantanus, and other hardwood trees, 0–250 years old), a managed young Norway spruce stand (Picea abies, 50 years old), and an agricultural field growing winter wheat in 2001, and potato in 2002. Large contrasts were found in NEE rates between the land uses of the ecosystems. The managed and unmanaged beech sites had very similar net CO2 uptake rates (∼−480 to −500 g C m−2 yr−1). Main differences in seasonal NEE patterns between the beech sites were because of a later leaf emergence and higher maximum leaf area index at the unmanaged beech site, probably as a result of the species mix at the site. In contrast, the spruce stand had a higher CO2 uptake in spring but substantially lower net CO2 uptake in summer than the beech stands. This resulted in a near neutral annual NEE (−4 g C m−2 yr−1), mainly attributable to an ecosystem respiration rate almost twice as high as that of the beech stands, despite slightly lower temperatures, because of the higher elevation. Crops in the agricultural field had high CO2 uptake rates, but growing season length was short compared with the forest ecosystems. Therefore, the agricultural land had low-to-moderate annual net CO2 uptake (−34 to −193 g C m−2), but with annual harvest taken into account it will be a source of CO2 (+97 to +386 g C m−2). The annually changing patchwork of crops will have strong consequences on the regions' seasonal and annual carbon exchange. Thus, not only land use, but also land-use history and site-specific management decisions affect the large-scale carbon balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-01
    Print ISSN: 0038-0717
    Electronic ISSN: 1879-3428
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-02-01
    Print ISSN: 1755-1307
    Electronic ISSN: 1755-1315
    Topics: Geography , Geosciences , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-01
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-12-05
    Description: Black alder (Alnus glutinosa (L.) Gaertn.) forests on peat soils have been reported to be hotspots for high nitrous oxide (N2O) losses. High emissions may be attributed to alternating water tables of peatlands and to the incorporation of high amounts of easily decomposable nitrogen (N) into the ecosystem by symbiotic dinitrogen (N2)-fixation of alder trees. Our study addressed the question to what extent drainage enhances the emissions of N2O from black alder forests and how N turnover processes and physical factors influence the production of N2O and total denitrification. The study was conducted in a drained black alder forest with variable groundwater tables at a southern German fen peatland. Fluxes of N2O were measured using the closed chamber method at two drained sites (D-1 and D-2) and one undrained site (U). Inorganic N contents and net N mineralization rates (NNM) were determined. Additionally a laboratory incubation experiment was carried out to investigate greenhouse gas and N2 fluxes at different temperature and soil moisture conditions. Significantly different inorganic N contents and NNM rates were observed which however did not result in significantly different N2O fluxes in the field, but in the laboratory experiment. Measured N2O fluxes were low for all sites, with total annual emissions of 0.51 ± 0.07 (U), 0.97 ± 0.13 (D-1) and 0.93 ± 0.08 kg N2O-N ha−1 yr−1 (D-2). Only 37% of the spatio-temporal variation in field N2O fluxes could be explained by peat temperature and groundwater level, demonstrating the complex interlinking of the controlling factors for N2O emissions. However, temperature was one of the key variables of N2O fluxes in the conducted incubation experiment. Increasing soil moisture content was found to enhance total denitrification losses during the incubation experiment, whereas N2O fluxes remained constant. At the undrained site, permanently high ground water level was found to prevent net nitrification, resulting in a limitation of available nitrate (NO3–) and negligible gaseous N losses. Up to four times higher N2O flux rates were measured in the incubation experiment. They reveal the potential of high N2O losses under changing soil physical conditions at the drained alder sites. The observed high net nitrification rates and high NO3– contents bear the risk of considerable NO3– leaching at the drained sites.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-22
    Description: The change in the German energy policy resulted in a strong development of biogas plants in Germany. As a consequence, huge amounts of nutrient rich residues remain from the fermentative process, which are used as organic fertilizers. Drained peatlands are increasingly used to satisfy the huge demand for fermentative substrates and the digestate is returned to the peatlands. However, drained organic soils are considered as hot spots for nitrous oxide (N2O) emissions and organic fertilization is additionally known to increase N2O emissions from managed grasslands. Our study addressed the questions (a) to what extent biogas digestate and cattle slurry application increase N2O, methane (CH4) and ammonia (NH3) fluxes as well as the mineral nitrogen use efficiency (NUEmin), and (b) how different soil organic matter contents (SOM) promote the production of N2O. The study was conducted at two areas within a grassland parcel, which differed in their soil organic carbon (SOC) contents. At each area (named Corg-medium and Corg-high) two sites were established, one was fertilized five times with biogas digestate and one with cattle slurry. For each treatment, fluxes of N2O and CH4 were measured over two years using the closed chamber method. For NH3 measurements we used the calibrated dynamic chamber method. On an annual basis the application of biogas digestate significantly enhanced the N2O fluxes compared to the application of cattle slurry and additionally increased the NUEmin. Furthermore, N2O fluxes from the Corg-high site significantly exceeded N2O fluxes from the Corg-medium sites. Annual cumulative emissions ranged from 0.91 ± 0.49 kg N ha−1 yr−1 to 3.14 ± 0.91 kg N ha−1 yr−1. Significantly different CH4 fluxes between the investigated treatments or the different soil types were not observed. Cumulative annual CH4 exchange rates varied between −0.21 ± 0.19 kg C ha−1 yr−1 and −1.06 ± 0.46 kg C ha−1 yr−1. Significantly higher NH3 losses from treatments fertilized with biogas digestate compared to those fertilized with cattle slurry were observed. The total NH3 losses following splash plate application were 18.17 kg N ha−1 for the digestate treatments and 3.48 kg N ha−1 for the slurry treatments (36% and 15% of applied NH4+-N). The observed linear increase of 16 days cumulative N2O-N exchange or rather annual N2O emissions, due to a higher mean groundwater level and a higher application rate of NH4+-N, reveal the importance of site adapted N fertilization and the avoidance of N surpluses in Corg rich grasslands.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-02-17
    Description: We summed estimates of the carbon balance of forests, grasslands, arable lands and peatlands to obtain country-specific estimates of the terrestrial carbon balance during the 1990s. Forests and grasslands were a net sink for carbon, whereas croplands were carbon sources in all European countries. Hence, countries dominated by arable lands tended to be losing carbon from their terrestrial ecosystems, whereas forest-dominated countries tended to be sequestering carbon. In some countries, draining and extraction of peatlands caused substantial reductions in the net carbon balance. Net terrestrial carbon balances were typically an order of magnitude smaller than the fossil fuel-related carbon emissions. Exceptions to this overall picture were countries where population density and industrialization are small. It is, however, of utmost importance to acknowledge that the typically small net carbon balance represents the small difference between two large but opposing fluxes: uptake by forests and grasslands and losses from arable lands and peatlands. This suggests that relatively small changes in either or both of these large component fluxes could induce large effects on the net total, indicating that mitigation schemes should not be discarded a priori. In the absence of carbon-oriented land management, the current net carbon uptake is bound to decline soon. Protecting it will require actions at three levels; a) maintaining the current sink activity of forests, b) altered agricultural management practices to reduce the emissions from arable soils or turn into carbon sinks and c) protecting current large reservoirs (wetlands and old forests), since carbon is lost more rapidly than sequestered.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-03
    Description: Global biosphere models vary greatly in their projections of future changes of global soil organic carbon (SOC) stocks and aggregated global SOC masses in response to climate change. We estimated the certainty (likelihood) and quantity of increases and decreases on a half-degree grid. We assessed the effect of changes in controlling factors, including net primary productivity (NPP), litter quality, soil acidity, water-saturation, depth of permafrost, land use, temperature, and aridity, in a temporally implicit model that uses categorized driver variables associated by probabilities (Bayesian Network). The probability-weighted results show that, globally, climate effects on NPP had the strongest impact on SOC stocks and the certainty of change after 75 years. Actual land use had the greatest effect locally because the assumed certainty of land use change per unit area was small. The probability-weighted contribution of climate to decomposition was greatest in the humid tropics because of greater absolute effects on decomposition fractions at higher temperatures. In contrast, climate effects on decomposition fractions were small in cold regions. Differences in decomposition rates between contemporary and future climate were greatest in arid subtropical regions because of projected strong increases in precipitation. Warming in boreal and arctic regions increased NPP, balancing or outweighing potential losses from thawing of permafrost. Across contrasting NPP scenarios tropical mountain forests were identified as hotspots of future highly certain C losses. Global soil C mass will increase by 1% with a certainty of 75% if NPP increases due to carbon-dioxide fertilization. At a certainty level of 75%, soil C mass will not change if CO2-induced increase of NPP is limited by nutrients.
    Electronic ISSN: 2199-3998
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-03
    Description: The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget. We review current estimates of soil organic carbon stocks (mass/area) and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg. Correcting the HWSD's bulk density of organic soils, especially Histosols, results in a mass of 1062 Pg. The uncertainty of bulk density of Histosols alone introduces a range of −56 to +180 Pg for the estimate of global SOC in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arc minutes, the areal masses of SOC and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. Incorporating more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Data Base (496 Pg SOC) and tropical peatland carbon, global soils contain 1324 Pg SOC in the upper 1 m including 421 Pg in tropical soils, whereof 40 Pg occur in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths 〉 1 m in peatlands, and variation in definitions of "peatland".
    Electronic ISSN: 2199-3998
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-04-16
    Description: The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD's bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm−3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of −56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths 〉 1 m in peatlands, and variation in definitions of "peatland".
    Print ISSN: 2199-3971
    Electronic ISSN: 2199-398X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...