ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: After a step increase in the atmospheric partial pressure of CO2 (pCO2), the availability of mineral N may be insufficient to meet the plant's increased demand for N. Over time, however, the ecosystem may adapt to the new conditions, and a new equilibrium may be established in the fluxes of C and N. This would result in a higher dry mass (DM) yield response of the plants to elevated pCO2.The effect of elevated atmospheric pCO2 (60 Pa pCO2) was studied in Lolium perenne L. swards with two N fertilization treatments (14 and 56 g m−2 y−1) in a six-year FACE (Free Air Carbon dioxide Enrichment) experiment. In the high N treatment, the input of N with fertilizer considerably exceeded the export of N with the harvested plant material in both CO2 treatments leading to an apparent net input of N into the ecosystem. Accordingly, the proportion of harvested N derived from 15N labelled fertilizer N, applied throughout the experiment (〈 6 years), increased over the years. Under these high N conditions, the annual DM yield response of the Lolium perenne sward to elevated pCO2 increased (from 7% in 1993 to 25% in 1998). In parallel, the response of N yield to elevated pCO2 increased, and the initially negative effect of elevated pCO2 on specific leaf area (SLA) disappeared. The high N input system seemed to overcome in part an initially limiting effect of N on the yield response to elevated pCO2 within a few years. In contrast, there was no apparent net input of N into the ecosystem in the low N treatment, because N fertilization just compensated the export of N with the harvested plant material. Accordingly, the proportion of harvested N yield, derived from fertilizer N, which was applied throughout the experiment, remained low. At low N, the availability of mineral N strongly limited plant growth and yield production in both CO2 treatments; the low yields of DM and N, the low concentration of N in the plant material, and the low SLA reflected this. Although the plants grew under the same environmental conditions and the same management treatment as plants in the high N treatment, the response of DM yields to elevated pCO2 in the low N treatment remained weak throughout the experiment (5% in 1993 and 9% in 1998). The results are discussed in the context of the sizes of the different N pools in the soil, the allocation of N within the plant and the possible effects on temporal immobilization, and the availability of mineral N for yield production as affected by elevated pCO2 and N fertilization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Trifolium repens L. and Lolium perenne L. were grown in monocultures and bi-species mixture in a Free Air Carbon Dioxide Enrichment (FACE) experiment at elevated (60 Pa) and ambient (35 Pa) CO2 partial pressure (pCO2) for three years. The effects of defoliation frequencies (4 and 7 cuts in 1993; 4 and 8 cuts in 1994/95) and nitrogen fertilization (10 and 42 g m–2 y–1 N in 1993; 14 and 56 g m–2 y–1 N in 1994/95) on the growth response to pCO2 were investigated.There were significant interspecific differences in the CO2 responses during the first two years, while in the third growing season, these interspecific differences disappeared. Yield of T. repens in monocultures increased in the first two years by 20% when grown at elevated pCO2. This CO2 response was independent of defoliation frequency and nitrogen fertilization. In the third year, the CO2 response of T. repens declined to 11%. In contrast, yield of L. perenne monocultures increased by only 7% on average over three years at elevated pCO2. The yield response of L. perenne to CO2 changed according to defoliation frequency and nitrogen fertilization, mainly in the second and third year. The ratio of root/yield of L. perenne increased under elevated pCO2, low N fertilizer rate, and frequent defoliation, but it remained unchanged in T. repens. We suggest that the more abundant root growth of L. perenne was related to increased N limitation under elevated pCO2.The consequence of these interspecific differences in the CO2 response was a higher proportion of T. repens in the mixed swards at elevated pCO2. This was evident in all combinations of defoliation and nitrogen treatments. However, the proportion of the species was more strongly affected by N fertilization and defoliation frequency than by elevated pCO2. Based on these results, we conclude that the species proportion in managed grassland may change as the CO2 concentration increases. However, an adapted management could, at least partially, counteract such CO2 induced changes in the proportion of the species. Since the availability of mineral N in the soil may be important for the species’ responses to elevated pCO2, more long-term studies, particularly of processes in the soil, are required to predict the entire ecosystem response.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: elevated CO2 ; leaf transpiration ; nonstructural carbohydrate ; P nutrition ; photosynthesis ; white clover
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The growth response of white clover (Trifolium repens L.) to the expected increase in atmospheric partial pressure of CO2 (pCO2) may depend on P availability. A decrease in the rate of transpiration due to increased pCO2 may reduce the amount of P transported to the shoot, thereby causing a change in the partitioning of P between the root and shoot. To test these hypotheses, four concentrations of P in the nutrient solution, combined with two pCO2 treatments, were applied to nodulated white clover plants. Compared to ambient pCO2 (35 Pa), twice ambient pCO2 (70 Pa) reduced the rate of transpiration but did not impair the total P uptake per plant. However, at twice ambient pCO2 and a moderate to high supply of P, concentrations of structural P and soluble P (Pi) were lower in the leaves and higher in the roots. The activity of root acid phosphatase was lower at twice ambient pCO2 than at ambient pCO2; it depended on the Pi concentration in the roots. At the highest P concentration, twice ambient pCO2 stimulated photosynthesis and the growth rate of the plant without affecting the concentration of nonstructural carbohydrates in the leaves. However, at the lower P concentrations, plants at twice ambient pCO2 lost their stimulation of photosynthesis in the afternoon, they accumulated nonstructural carbohydrates in the leaves and their growth rate was not stimulated; indicating C-sink limitation of growth. P nutrition will be crucial to the growth of white clover under the expected future conditions of increased pCO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: elevated atmospheric carbon dioxide ; nitrogen cycling ; N mineralisation ; Swiss FACE
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of elevated (60 Pa) atmospheric carbon dioxide partial pressure (pCO2) and N fertilisation on the availability of mineral N and on N transformation in the soil of a Lolium perenne L. monoculture was investigated in the Swiss FACE (Free Air Carbon dioxide Enrichment) experiment. The apparent availability of nitrate and ammonium for plants was estimated during a representative, vegetative re-growth period at weekly intervals from the sorption of the minerals to mixed-bed ion-exchange resin bags at a soil depth of 5 cm. N mineralisation was measured using sequential coring and in situ exposure of soil cores in the top 10 cm of the soil before and after the first cut in spring 1997. High amounts of mineral N were bound to the ion exchange resin during the first week of re-growth. This was probably the combined result of the fertiliser application, the weak demand for N by the newly cut sward and presumably high rates of root decay and exudation after cutting the sward. During the first 2 weeks after the application of fertiliser N at the first cut, there was a dramatic reduction in available N; N remained low during the subsequent weeks of re-growth in all treatments. Overall, nitrate was the predominant form of mineral N that bound to the resin for the duration of the experiment. Apparently, there was always more nitrate than ammonium available to the plants in the high N fertilisation treatment for the whole re-growth period. Apparent N availability was affected significantly by elevated pCO2 only in the first week after the cut; under high N fertilisation, elevated pCO2 increased the amount of mineral N that was apparently available to the plants. Elevated pCO2 did not affect apparent net transformation of N, loss of N or uptake of N by plants. The present data are consistent with earlier results and suggest that the amount of N available to plants from soil resources does not generally increase under elevated atmospheric pCO2. Thus, a possible limiting effect of N on primary production could become more stringent under elevated atmospheric pCO2 as the demand of the plant for N increases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-10-01
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-04-01
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...