ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 737-746 
    ISSN: 0006-3592
    Keywords: ultrafiltration ; scale-up ; scale-down ; linear scale ; proteins ; membrane fouling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Tangential flow filtration has traditionally been scaled up by maintaining constant the filtrate volume to membrane surface area ratio, membrane material and pore size, channel height, flow path geometry and retentate and filtrate pressures. Channel width and the number of channels have been increased to provide increased membrane area. Several other parameters, however, have not been maintained constant. A new comprehensive methodology for implementation of linear scale up and scale down of tangential flow filtration processes has been developed. Predictable scale up can only be achieved by maintaining fluid dynamic parameters which are independent of scale. Fluid dynamics are controlled by operating parameters (feed flow rate, retentate pressure, fed batch ratio and temperature), geometry (channel length, height, turbulence promoter and entrance/exit design), materials (membrane, turbulence promoter, and encapsulant compression), and system geometry (flow distribution). Cassette manufacturing procedures and tolerances also play a significant role in achieving scale independent performance. Extensive development work in the aforementioned areas has resulted in the successful implementation of linear scale up of ultrafiltration processes for recovery of human recombinant DNA derived pharmaceuticals. A 400-fold linear scale up has been achieved without intermediate pilot scale tests. Scale independent performance has a direct impact on process yield, protein quality and product economics and is therefore particularly important in the biotechnology industry. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 737-746, 1997.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: tangential flow filtration ; ultrafiltration ; size exclusion chromatography ; protein purification ; fractionation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Conventional tangential flow filtration (TFF) has traditionally been limited to separation of solutes that differ by about ten-fold in size. Wide pore-size distributions, membrane fouling, and concentration polarization phenomena have commonly been cited as reasons for this limitation. The use of TFF in the biotechnology industry has therefore been restricted to cell-protein, virus-protein, and protein-buffer separations. A multi-disciplinary team with industrial and academic members was formed to overcome these limitations and enable protein-protein separations using High Performance TFF (HPTFF) systems. Pore-size distributions have been improved with the development of new membrane formulation and casting techniques. Membrane fouling has been controlled by operating in the transmembrane pressure-dependent regime of the filtrate flux curve and by carefully controlling fluid dynamic start-up conditions. Concentration polarization was exploited to enhance, rather than limit, the resolution of solutes. Concentration polarization has also been controlled by operating a co-current filtrate stream that maintains transmembrane pressure constant along the length of the TFF module. High yields and purification factors were obtained even with small differences in protein sieving. IgG-BSA and BSA monomer-oligomer mixtures have successfully been separated with these systems. HPTFF technology provides a competitive purification tool to complement chromatographic processing of proteins. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 71-82, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...