ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: Two-dimensional MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use in the near-infrared region on the James Webb Space Telescope (JWST). The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast. The JWST environment requires cryogenic operation at 35K. Microshutter arrays are fabricated out of silicon-oxide-insulated (SOI) silicon wafers. Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 p. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. The mechanical shutter arrays are fabricated using MEMS technologies. The processing includes a multi- layer metal deposition and patterning of shutter electrodes and magnetic pads, reactive ion etching (NE) of the front side to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, followed by a deep RIE (DRIE) back-etch down to the nitride shutter membrane to form W e s and relieve shutters from the silicon substrate. An additional metal deposition and patterning is used to form back electrodes. Shutters are actuated using a magnetic force and latched using an electrostatic force. . . . KEYWORDS: microshutter, MEMS, RIE, DRIE, micro-optics, near inbred, space telescope
    Keywords: Instrumentation and Photography
    Type: SPIE International Symposium Smart Materials, Nano and Micro-Smart Systems; Dec 12, 2004 - Dec 15, 2004; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Three device improvements have been developed that dramatically enhance the contrast ratio of microshutters. The goal of a microshutter is to allow as much light through as possible when the shutters are in the open configuration, and preventing any light from passing through when they are in the closed position. The ratio of the transmitted light that is blocked is defined here as the contrast ratio. Three major components contribute to the improved performance of these microshutters: 1. The precise implementation of light shields, which protect the gap around the shutters so no light can leak through. It has been ascertained that without the light shield there would be a gap on the order of 1 percent of the shutter area, limiting the contrast to a maximum of 100. 2. The precise coating of the interior wall of each microshutter was improved with an insulator and metal using an angle deposition technique. The coating prevents any infrared light that finds an entrance on the surface of the microshutter cell from being emitted from a sidewall. Since silicon is in effect transparent to any light with a wavelength longer than .1 micrometer, these coatings are essential to blocking any stray signals when the shutters are closed. 3. A thin film of molybdenum nitride (MoN) was integrated onto the surface of the microshutter blade. This film provides the majority of light blockage over the microshutter and also ensures that the shutter can be operated over a wide temperature range by maintaining its flatness. These improvements were motivated by the requirements dictated by the James Webb Space Telescope NIRSpec instrument. The science goals of the NIRSpec require observing some of the very faintest objects in a given field of view that also may contain some very bright objects. To observe the faint objects, the light from the bright objects - which could be thousands of times brighter - must be completely blocked. If a closed microshutter is even slightly transmissive, a very bright object will still transmit a small signal, which can be larger than a signal from a very faint object transmitted through an open shutter. Since this situation can completely corrupt the results, it was necessary that the closed shutters be able to attenuate light by at least a factor of 2,000. There currently exist four flight-quality microshutter arrays that have been fully or are currently undergoing testing and the results support that the three improvements described above have successfully led to contrast levels greater than 50,000 in over 99 percent of the microshutters at an operating temperature of 35 K. Applications for these high-contrast microshutters are in the photomask generation and stepper equipment used to make integrated circuits and microelectromechanical (MEMS) devices. Since microshutters are a reconfigurable optical element, their versatility in these industries provides an improvement over printed masks and fixed projection alignment systems.
    Keywords: Technology Utilization and Surface Transportation
    Type: GSC- 15609-1 , NASA Tech Briefs, September 2009; 26-27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A complex MEMS microshutter array system has been developed at NASA Goddard Space Flight Center (GSFC) for use as a multi-object aperture array for a Near-Infrared Spectrometer (NIRSpec). The NIRSpec is one of the four major instruments carried by the James Webb Space Telescope (JWST), the next generation of space telescope after the Hubble Space Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light with high efficiency and high contrast. It is demonstrated in Figure 1 how a MSA is used as a multiple object selector in deep space. The MSAs empower the NIRSpec instrument simultaneously collect spectra from more than 100 targets therefore increases the instrument efficiency 100 times or more. The MSA assembly is one of three major innovations on JWST and the first major MEMS devices serving observation missions in space. The MSA system developed at NASA GSFC is assembled with four quadrant fully addressable 365x171 shutter arrays that are actuated magnetically, latched and addressed electrostatically. As shown in Figure 2, each MSA is fabricated out of a 4' silicon-on-insulator (SOI) wafer using MEMS bulk-micromachining technology. Individual shutters are close-packed silicon nitride membranes with a pixel size close to 100x200 pm (Figure 3). Shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. In order to prevent light leak, light shields are made on to the surrounding frame of each shutter to cover the gaps between the shutters and the Game (Figure 4). Micro-ribs and sub-micron bumps are tailored on hack walls and light shields, respectively, to prevent sticktion, shown in Figures 4 and 5. JWST instruments are required to operate at cryogenic temperatures as low as 35K, though they are to be subjected to various levels of ground tests at room temperature. The shutters should therefore maintain nearly flat in the entire temperature range between 35K and 300K. Through intensive numerical simulations and experimental studies, an optically opaque and electrically conductive metal-nitride thin film was selected as a coating material deposited on the shutters with the best thermal-expansion match to silicon nitride - the shutter blade thin film material. A shutter image shown in Figure 6 was taken at room temperature, presenting shutters slightly bowing down as expected. Shutters become flat when the temperature decreases to 35K. The MSAs are then bonded to silicon substrates that are fabricated out of 6" single-silicon wafers in the thickness of 2mm. The bonding is conducted using a novel single-sided indium flip-chip bonding technology. Indium bumps fabricated on a substrate are shown in Figure 7. There are 180,000 indium bumps for bonding a flight format MSA array to its substrate. Besides a MSA, each substrate houses five customer-designed ASIC (Application Specific Integrated Circuit) multiplexer/address chips for 2-dimensional addressing, twenty capacitors, two temperature sensors, numbers of resistors and all necessary interconnects, as shown in Figure 8. Complete MSA quadrant assemblies have been successfully manufactured and fully functionally tested. The assemblies have passed a series of critical reviews required by JWST in satisfying all the design specifications. The qualification tests cover programmable 2-D addressing, life tests, optical contrast tests, and environmental tests including radiation, vibration, and acoustic tests. A 2-D addressing pattern with 'ESA' letters programmed in a MSA is shown in Figure 9. The MSAs passed 1 million cycle life tests and achieved high optical contrast over 10,000. MSA teams are now making progress in final fabrication, testing and assembly (Figure 10). The delivery of flight-format MSA system is scheduled at the end of 2008 for being integrated to the focal plane of the NIRSpec detectors.
    Keywords: Optics
    Type: P-0166 , Hilton Head Workshop 2008: A Solid-State Sensors, Actuators and Microsystems Workshop; Jun 01, 2008 - Jun 05, 2008; Georgia; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Two-dimensional MEMS microshutter arrays are being developed for use as a high contrast field selector for the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST). We present details of microshutter array fabrication and give results of work done to optimize the flatness of microshutter elements through film stress control for both room temperature and cryogenic (35K) operation.
    Keywords: Optics
    Type: Eurosensors XX; Sep 17, 2006 - Sep 20, 2006; Goteberg; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use as an aperture array for a Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast, Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 microns. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on to each shutter for light leak prevention so to enhance optical contrast, Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS technologies.
    Keywords: Space Sciences (General)
    Type: Smart Materials, Nano, and Micro Smart Systems; Dec 10, 2006 - Dec 13, 2006; Adelaide; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...