ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 16 (1980), S. 305-316 
    ISSN: 1573-2673
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: Résumé Les facteurs d'intensité de contrainte K I et K II sont obtenus dans le cas d'une fissure émanant d'un trou circulaire dans une plaque infinie et soumis à une charge ponctuelle. On utilise une approche par développement en série et une formulation de Muskhelishvili dans la théorie bi-dimensionnelle de l'élasticité afin de dériver une solution. La possibilité d'appliquer la solution est démontrée en l'utilisant comme une fonction de Green pour obtenir des valeurs de K I et K II dans la cas de: (1) une tension biaxiale sur une plaque infinie et (2) la flexion d'une bande de largeur suffisante.
    Notes: Abstract Stress-intensity factors, K I and K II, are obtained for a point loaded crack emanating from a circular hole in an infinite plate. A series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity are used to derive the solution. The applicability of the solution is demonstrated by using it as a Green's function to obtain K I and K II in the case of (1) biaxial tension of an infinite plate and (2) bending of a wide strip.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1980-08-01
    Print ISSN: 0376-9429
    Electronic ISSN: 1573-2673
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Structural flaws and cracks may grow under fatigue inducing loads and, upon reaching a critical size, cause structural failure to occur. The growth of these flaws and cracks may occur at load levels well below the ultimate load bearing capability of the structure. The Fatigue Crack Growth Computer Program, NASA/FLAGRO, was developed as an aid in predicting the growth of pre-existing flaws and cracks in structural components of space systems. The earlier version of the program, FLAGRO4, was the primary analysis tool used by Rockwell International and the Shuttle subcontractors for fracture control analysis on the Space Shuttle. NASA/FLAGRO is an enhanced version of the program and incorporates state-of-the-art improvements in both fracture mechanics and computer technology. NASA/FLAGRO provides the fracture mechanics analyst with a computerized method of evaluating the "safe crack growth life" capabilities of structural components. NASA/FLAGRO could also be used to evaluate the damage tolerance aspects of a given structural design. The propagation of an existing crack is governed by the stress field in the vicinity of the crack tip. The stress intensity factor is defined in terms of the relationship between the stress field magnitude and the crack size. The propagation of the crack becomes catastrophic when the local stress intensity factor reaches the fracture toughness of the material. NASA/FLAGRO predicts crack growth using a two-dimensional model which predicts growth independently in two directions based on the calculation of stress intensity factors. The analyst can choose to use either a crack growth rate equation or a nonlinear interpolation routine based on tabular data. The growth rate equation is a modified Forman equation which can be converted to a Paris or Walker equation by substituting different values into the exponent. This equation provides accuracy and versatility and can be fit to data using standard least squares methods. Stress-intensity factor numerical values can be computed for making comparisons or checks of solutions. NASA/FLAGRO can check for failure of a part-through crack in the mode of a through crack when net ligament yielding occurs. NASA/FLAGRO has a number of special subroutines and files which provide enhanced capabilities and easy entry of data. These include crack case solutions, cyclic load spectrums, nondestructive examination initial flaw sizes, table interpolation, and material properties. The materials properties files are divided into two types, a user defined file and a fixed file. Data is entered and stored in the user defined file during program execution, while the fixed file contains already coded-in property value data for many different materials. Prompted input from CRT terminals consists of initial crack definition (which can be defined automatically), rate solution type, flaw type and geometry, material properties (if they are not in the built-in tables of material data), load spectrum data (if not included in the loads spectrum file), and design limit stress levels. NASA/FLAGRO output includes an echo of the input with any error or warning messages, the final crack size, whether or not critical crack size has been reached for the specified stress level, and a life history profile of the crack propagation. NASA/FLAGRO is modularly designed to facilitate revisions and operation on minicomputers. The program was implemented on a DEC VAX 11/780 with the VMS operating system. NASA/FLAGRO is written in FORTRAN77 and has a memory requirement of 1.4 MB. The program was developed in 1986.
    Keywords: STRUCTURAL MECHANICS
    Type: MSC-21669
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The experimental and analytical efforts performed for fracture control of the Space Shuttle auxiliary power unit (APU) wheel are described and a summary of fracture mechanics concepts relevant to safe-life analysis of fatigue loaded parts is given. An environmental crack growth test program is conducted by NASA on candidate wheel materials exposed to decomposed hydrazine which is found to be no more severe in causing crack growth than an environment of high-temperature air. Details of the crack growth testing and the safe-life analysis are presented. The results show that special nondestructive examination is needed for the APU wheel to meet the required mission life for either the maximum design or expected speed-range operations.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: Theoretical and Applied Fracture Mechanics (ISSN 0167-8442); 3; 71-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: During the design stages of the shuttle orbiter, fracture-mechanics concepts were applied extensively to the highly stressed areas of the structure. This was the first space program to require a comprehensive fracture mechanics approach to prevent structural failures from crack or crack-like defects. As anticipated, some difficult problems were encountered. This paper briefly describes some of them together with the procedure used for fracture control on the orbiter. It is believed that the principles and methods as presented herein can serve as an example of fracture control for aerospace and other industries.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-16
    Keywords: STRUCTURAL MECHANICS
    Type: Engineering Fracture Mechanics; 4; June 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-17
    Description: Stress-intensity factors, K/I/ and K/II/, are obtained for a point loaded crack emanating from a circular hole in an infinite plate. A series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity are used to derive the solution. The applicability of the solution is demonstrated by using it as a Green's function to obtain K/I/ and K/II/ and the case of (1) biaxial tension of an infinite plate and (2) bending of a wide strip.
    Keywords: STRUCTURAL MECHANICS
    Type: International Journal of Fracture; 16; Aug. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-16
    Description: For both the maximum stress criterion and strain-energy-density-factor (S) theory, fracture angle (the initial angle of crack growth) is predicted by using opening and sliding mode stress intensity factors. These theoretical predictions are consistent with experimental fracture angles. For the S theory, the crack spreads in the direction of the negative fracture angle in a plane for which S is a minimum. This quantity was obtained analytically. The experimental data of the critical S on plexiglass fracture specimens remains essentially constant.
    Keywords: STRUCTURAL MECHANICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-18
    Description: Stress-intensity factors are obtained for point loaded equal length cracks emanating from a circular hole in an infinite plate. A series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity are used to derive the solution. The applicability of the solution is demonstrated by using it as a Green's function to obtain stress-intensity factors in the case of (1) biaxial tension and pure shear of an infinite plate and (2) tension and pin loading of a plate with cracks emanating from one hole in a row of holes.
    Keywords: STRUCTURAL MECHANICS
    Type: Res Mechanica (ISSN 0143-0084); 9; 2, 19; 1983
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: The NASA/FLAGRO (NASGRO) computer program was developed for fracture control analysis of space hardware and is currently the standard computer code in NASA, the U.S. Air Force, and the European Agency (ESA) for this purpose. The significant attributes of the NASGRO program are the numerous crack case solutions, the large materials file, the improved growth rate equation based on crack closure theory, and the user-friendly promptive input features. In support of the National Aging Aircraft Research Program (NAARP); NASGRO is being further developed to provide advanced state-of-the-art capability for damage tolerance and crack growth analysis of aircraft structural problems, including mechanical systems and engines. The project currently involves a cooperative development effort by NASA, FAA, and ESA. The primary tasks underway are the incorporation of advanced methodology for crack growth rate retardation resulting from spectrum loading and improved analysis for determining crack instability. Also, the current weight function solutions in NASGRO or nonlinear stress gradient problems are being extended to more crack cases, and the 2-d boundary integral routine for stress analysis and stress-intensity factor solutions is being extended to 3-d problems. Lastly, effort is underway to enhance the program to operate on personal computers and work stations in a Windows environment. Because of the increasing and already wide usage of NASGRO, the code offers an excellent mechanism for technology transfer for new fatigue and fracture mechanics capabilities developed within NAARP.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, FAA(NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance; p 277-288
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...